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Single-cell molecular profiling technologies are gaining rapid 
traction, but the manual process by which resulting cell types 
are typically annotated is labor intensive and rate-limiting. 
We describe Garnett, a tool for rapidly annotating cell types in 
single-cell transcriptional profiling and single-cell chromatin 
accessibility datasets, based on an interpretable, hierarchical 
markup language of cell type-specific genes. Garnett success-
fully classifies cell types in tissue and whole organism datas-
ets, as well as across species.

Single-cell transcriptional profiling (scRNA-seq) is a power-
ful means of cataloging the myriad cell types present in multicel-
lular organisms1. The computational steps of constructing a cell 
atlas typically include unsupervised clustering of cells based on 
their gene expression profiles, followed by annotation of known 
cell types among the resulting clusters2,3. For the latter task, there 
are at least four key challenges. First, cell type annotation is labor 
intensive, requiring extensive literature review of cluster-specific 
genes4. Second, any revision to the analysis (for example, additional 
data, parameter adjustment) necessitates manual reevaluation of all 
previous annotations. Third, annotations are not easily transferred 
between datasets generated by independent groups on related tis-
sues, resulting in wasteful repetition of effort. Finally, annotation 
labels are typically ad hoc; although ontologies of cell types exist5,6, 
we lack tools for systematically applying these ontologies to scRNA-
seq data. Collectively, these challenges hinder progress toward a con-
sensus framework for cell types and the features that define them.

Toward addressing these challenges, we devised Garnett (https://
cole-trapnell-lab.github.io/garnett) (Fig. 1a). Garnett consists of 
four components. First, Garnett defines a markup language for 
specifying cell types using the genes that they specifically express. 
The markup language is hierarchical in that a cell type can have 
subtypes (for example, CD4+ and CD8+ are subsets of T  cells). 
Second, Garnett includes a parser that processes the markup file 
together with a single-cell dataset, identifying representative cells 
bearing markers that unambiguously identify them as one of the 
cell types defined in the file. Third, Garnett trains a classifier that 
recognizes additional cells as belonging to each cell type based on 
their similarity to representative cells, similar to an approach that 
our groups recently developed for annotating a single-cell mouse 
atlas of chromatin accessibility7. Garnett does not require that cells 
be organized into clusters, but it can optionally extend classifica-
tions to additional cells using either its own internal clustering 
routines or those of other tools. Finally, Garnett provides a method 
for applying a classifier trained on one dataset to rapidly annotate 
additional datasets.

We tested Garnett on a benchmark scRNA-seq dataset compris-
ing 94,571 immunophenotyped peripheral blood mononuclear cells 

(PBMCs), generated with the 10X Chromium platform8. Garnett 
requires ≥1 marker gene for each cell type. To classify the PBMCs, 
we populated a marker file including each of the expected cell types 
using literature-based markers. As a supervised method, Garnett’s 
accuracy will be dependent on these markers, so we devised a mea-
sure of each marker’s usefulness for the purposes of Garnett classifi-
cation (see Methods). We used this quality metric to exclude poorly 
scoring markers (ambiguity >0.5) before proceeding with classifica-
tion (Supplementary Fig. 1a).

Garnett assigned 71% (3% incorrect, 26% unclassified) of cells 
to the correct type (cluster-agnostic type), with 34% of T cells also 
receiving a correct subtype classification (41% not subclassified, 
23% unclassified, 2% incorrect) (Fig. 1b,c). Cells remaining unla-
beled were comparably distributed among immunophenotypes. 
Moreover, by expanding cell type assignments to nearby cells using 
Louvain clustering9 (cluster-extended type), correct assignments 
increased to 94% (2% incorrect, 4% unclassified), with 91% of 
T cells also receiving a correct subtype classification (8% not sub-
classified, <1% unclassified, <1% incorrect).

We next evaluated Garnett’s ability to classify data not seen dur-
ing training by analyzing PBMCs that were profiled to a higher 
molecular depth with a different library preparation method and a 
different Chromium system (v.2) (Supplementary Fig. 1b). Because 
these cells were unsorted, we manually assigned cell types to clus-
ters based on classic markers (Supplementary Fig. 1c–e). Although 
trained on sparser molecular data from a different method and 
instrument, classification accuracy remained high, with 80% (3% 
incorrect, 17% unclassified) of cells correctly labeled with cluster-
agnostic type and 95% (3% incorrect, 2% unclassified) with cluster-
extended type (Supplementary Fig. 1f,g). Of note, when trained on 
these more deeply profiled v.2 cells, Garnett also accurately classified 
the more sparsely profiled v.1 cells (83% correct with cluster-agnos-
tic type and 95% correct with cluster-extended) (Supplementary 
Fig. 1h,). We furthermore used the PBMC datasets to explore the 
limits of Garnett and found that the algorithm was robust to rare 
and missing cell types and low data quality (Supplementary Figs. 2 
and 3 and Supplementary Note).

To assess Garnett’s ability to catalog cell types in complex solid 
tissues, we analyzed lung tissue data from two recently reported cell 
atlases, the Mouse Cell Atlas (MCA)3 and Tabula Muris (TM)2. We 
defined a single hierarchy of expected lung cell types based on those 
studies and compiled marker genes from literature to recognize 
them in each dataset (marker files are Supplementary Files, consen-
sus cell type names in Supplementary Table 1). Overall, Garnett’s 
classifications agreed with both the MCA (58% correct, 29% unclas-
sified with cluster-agnostic type; 65% correct, 23% unclassified with 
cluster-extended type; see Supplementary Fig. 4a,b) and TM (71% 
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correct, 22% unclassified with cluster-agnostic type; 87% correct, 
8% unclassified with cluster-extended type; see Supplementary 
Fig. 4c,d) annotations, which were derived by manual inspec-
tion of genes enriched in each cluster. Moreover, a Garnett model 
trained on the MCA accurately classified the TM cells and vice versa 
(trained on MCA: 82% correct, 5% unclassified with cluster-agnos-
tic type; 86% correct, 2% unclassified with cluster-extended type; 
trained on TM: 46% correct, 30% unclassified with cluster-agnostic 
type; 56% correct, 21% unclassified with cluster-extended type; see 
Supplementary Fig. 4e–h).

We next sought to evaluate whether Garnett was similarly use-
ful for annotating single-cell chromatin accessibility (scATAC-seq) 
datasets, which we have generally found to be more challenging to 
manually annotate than scRNA-seq datasets. We and colleagues 
recently used regularized, multinomial regression to classify clus-
ters of cells based on chromatin accessibility7. We adapted Garnett 
to classify cells based on scATAC-seq-derived ‘gene activity scores’, 
a measure of open chromatin around each gene10. Applying it to 
our recent scATAC-seq atlas of the mouse7, Garnett labeled 39% of 
cells concordantly with our previous assignments (cluster-extended; 
22% incorrect; 39% unclassified) (Supplementary Fig. 5). A caveat is 
that the marker file was informed by our previous literature-based 
annotation of the dataset by a related method, but these analyses 
nonetheless illustrate the potential of Garnett to enable the rapid 
annotation of not only scRNA-seq but also scATAC-seq datasets.

We next applied Garnett to the task of discriminating all cell 
types of a whole animal, L2 stage Caenorhabditis elegans11. We 
defined a cell hierarchy that discriminated 29 major cell types, as 
well as subtypes of neuron, using the marker genes from the origi-
nal study. Of cells previously assigned, Garnett labeled 87% of cells 
concordantly for major cell type (cluster-extended; 8% incorrect, 

5% unclassified), with rectum cells being frequently mislabeled as 
non-seam hypodermis (Fig. 2a,b and Supplementary Figs. 6,7). Of 
4,186 neurons originally assigned subtypes, 53% were subtyped 
correctly and a further 18% were labeled as neurons of unknown 
subtype (cluster-agnostic; 8% incorrect) (Fig. 2c). These analyses 
demonstrate Garnett can scale to classifying the cell types found in 
a whole animal.

To evaluate how Garnett would perform on a complex system 
with a deep hierarchy, we generated a four-level classifier with 144 
cell definitions for mouse nervous system based on the data and 
taxonomy presented in ref. 12 (Supplementary Fig. 8). We found 
Garnett performed very well at the higher levels, but often under-
classified cells at the lower, more specific levels (for example, clas-
sifying a cerebellum neuron as a neuron) (Supplementary Fig. 9a–e 
and Supplementary Fig. 10). The size and complexity of this hier-
archy facilitated exploration of the properties of markers chosen by 
the elastic-net regression to discriminate among cell types. Garnett 
tended to select genes that were more highly expressed and more 
specific than other genes (Supplementary Fig. 11).

Finally, as tissue-specific gene expression patterns are largely 
conserved across vertebrates13, we wondered whether Garnett 
models trained on mouse data could be used to classify human 
cell types. We applied the Garnett model trained on the MCA lung 
dataset to scRNA-seq data from human lung tumors14 (Fig. 3a,b, 
Supplementary Fig. 12 and Supplementary Table 1). Over 92% of 
alveolar, B cells, T cells, epithelial (ciliated) cells, endothelial cells 
and fibroblasts were accurately assigned by the Garnett MCA 
model. Of the 9,756 cells annotated as myeloid14, Garnett labeled 
44% as monocyte/macrophage/dendritic cell and a further 16% 
granulocytes, leaving 34% unclassified. 22% of the dataset was 
labeled ‘unknown’, of which 55% were identified as tumor cells in 
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Fig. 1 | Garnett accurately classifies peripheral blood mononuclear cells. a, Overview of the Garnett algorithm (Methods). b, t-SNE plots of 10X 
Genomics’ 100,000 cell PBMC dataset (n = 94,571 cells). The first panel is colored by cell type based on FACS sorting, the second panel is colored by 
cluster-agnostic cell type according to Garnett classification and the third panel is colored by the Garnett cluster-extended type, which labels cells based 
on the composition of their cluster or community. c, A heatmap of data in b comparing the labels based on FACS (rows) with the cluster-agnostic (left) 
and cluster-extended (right) cell type assignments by Garnett (columns). Color represents the percentage of cells of a certain FACS type labeled each type 
by Garnett. t-SNE, t-distributed stochastic neighbor embedding.
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the original study. As expected, given that they are not represented 
in the original marker file nor in the MCA lung dataset, 88% of all 
cells annotated as tumor cells in the original study were labeled as 
‘unknown’ by Garnett. These analyses demonstrate that Garnett has 
the potential to operate across related species, and is not necessarily 
confounded by the presence of pathological cell states when trained 
on normal healthy tissue.

Cell type annotation is a critical and rate-limiting step in cell type 
atlas construction, as illustrated by recent studies that resorted to 
labor-intensive, ad hoc literature review to achieve this end2,3,7,11,12,15. 
Garnett is an algorithm and accompanying software that automates 
and standardizes the process of classifying cells based on marker 
genes. While other algorithms for automated cell type assignment 
have been published3,16 we believe that Garnett’s ease-of-use and 
lack of requirement of pre-classified training datasets will make 
it an asset for future cell type annotation. One existing method, 
scMCA, trained a model using MCA data that can be applied to 
newly sequenced mouse tissues. scMCA reported a slightly higher 
accuracy than Garnett3, likely because of a training procedure that 
relies on manual annotation of cell clusters. But a key distinction 
is that the hierarchical marker files on which Garnett is based are 
interpretable to biologists and explicitly relatable to the existing 
literature. Furthermore, together with these markup files, Garnett 
classifiers trained on one dataset are easily shared and applied to 
new datasets, and are robust to differences in depth, methods  
and species.

We anticipate the potential for an ‘ecosystem’ of Garnett marker 
files and pre-trained classifiers that: (1) enable the rapid, automated, 
reproducible annotation of cell types in any newly generated data-
set, (2) minimize redundancy of effort, by allowing for marker gene 
hierarchies to be easily described, compared and evaluated and (3) 
facilitate a systematic framework and shared language for specify-
ing, organizing and reaching consensus on a catalog of molecularly 
defined cell types. To these ends, in addition to releasing the Garnett 
software, we have made the marker files and pre-trained classifi-
ers described in this manuscript available at a wiki-like website that 
facilitates further community contributions, together with a web-
based interface for applying Garnett to user datasets (https://cole-
trapnell-lab.github.io/garnett).
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Fig. 2 | Garnett can discriminate among cell types across a whole animal, across species and between normal and pathological tissue. Garnett 
classification results for sci-RNA-seq data from whole C. elegans, published in ref. 11. a, t-SNE plots of the whole worm dataset (n = 42,035 cells). Left panel 
is colored by published type from ref. 11, right panel colored by the major (top level) Garnett cluster-extended classification. Garnett cluster-agnostic type 
is available in Supplementary Fig. 7. b, Heatmap comparing the reported cell types versus the Garnett cluster-extended cell types. Color represents the 
percentage of cells of a certain reported type labeled as each type by Garnett. c, Heatmap comparing the reported neuron subtypes versus the Garnett 
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Fig. 3 | Garnett accurately classifies across species and distinguishes 
normal and pathological tissue. a, Garnett cluster-extended results for 
human lung tumors from ref. 14 classified based on a Garnett classifier 
trained on lung cells from the MCA. t-SNE plots of the human lung tumor 
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Methods
Garnett. Garnett is designed to simplify, standardize and automate the 
classification of cells by type and subtype. To train a new model with Garnett, 
the user must specify a cell hierarchy of cell types and subtypes, which may be 
organized into a tree of arbitrary depth; there is no limit to the number of cell types 
allowed in the hierarchy. For each cell type and subtype, the user must specify at 
least one marker gene that is taken as positive evidence that the cell is of that type. 
Garnett includes a simple language for specifying these marker genes, to make the 
software more accessible to users unfamiliar with statistical regression. Negative 
marker genes, that is, taken as evidence against a cell being of a given type, can 
also be specified. In addition, Garnett includes tools for selecting and checking the 
quality of markers. Garnett uses the marker information provided to select cells 
that are then used to train an elastic-net regression-based classifier17, similar to 
the approach taken in ref. 7. After a classifier is trained, it can be applied to other 
single-cell datasets run on the same or different platforms. Algorithmic details are 
provided below.

Constructing marker files. Garnett uses a marker file to allow users to specify 
cell type definitions. These definitions are then used to choose representative cells 
from each cell type to use when training the classifier. Full details describing the 
syntax of the marker file are provided as part of the software package. Briefly, the 
marker file consists of a series of cell type entries, beginning with a cell type name, 
followed by lists of expressed markers and metadata. In addition, cell types can be 
specified to be a subtype of another defined type; that is, hierarchical definitions. 
Marker files also have the capability to hold literature references for the chosen 
marker genes that are then included as metadata in the classifier.

Because only markers that are expressed specifically in a given cell type are 
useful for Garnett classification, we also provide functions for assessing the value 
of each of the provided marker genes. These functions estimate the number of cells 
that a given marker nominates for their cell type, the number of cells that become 
‘ambiguously’ nominated to multiple cell types in a given level of the hierarchy 
when the marker is included, and an overall marker score G, defined as:

G ¼ 1
aþ pð Þ ´

b
n

where a is the fraction of cells nominated by the given marker that are made 
ambiguous by that marker, p is a small pseudocount, b is the number of cells 
nominated by the marker and n is the total number of cells nominated for that cell 
type. In addition to estimating these values, Garnett will plot a diagnostic chart to 
aid the user in choosing markers (for example, Supplementary Fig. 1a).

Training the classifier. Garnett’s first step in training a cell type classifier is to 
choose representative cells to train on. Let M be an m by n matrix of input gene 
expression data. First, Mi,j is normalized by size factor (the geometric mean of 
the total unique molecular indexes expressed for each cell j) to adjust for read 
depth, resulting in a normalized m by n matrix N. In addition, the gene IDs of 
the expression data are converted to Ensembl IDs using correspondence tables 
from a Bioconductor AnnotationDbi-class18 package. Next, the input marker file 
is parsed and the gene IDs are also converted to Ensembl IDs as above. Finally, a 
tree representation of the marker file is constructed, with any designated subtypes 
placed as children of the parent cell type in the tree. In addition to the tree, a 
dataset-wide size factor is generated and saved to the tree to allow normalization to 
new datasets for later classification (see Classifying cells).

For each parent node in the tree, the following steps are taken: first, cells are 
scored as ‘expressed’ or ‘not expressed’ for each of the provided markers and an 
aggregate marker score is derived for each cell type for each cell (details on scoring 
below). Next, any metadata or hard expression cutoffs are applied to exclude a 
subset of cells from consideration. Last, outgroup samples are chosen (see below). 
After choosing the training sample, the classifier is trained (see below), and a 
preliminary classification is made to further train downstream nodes.

Aggregated marker scores. We devised an aggregated marker scoring system to 
address two challenges of single-cell RNA-seq data for the purposes of identifying 
representative cell types based on markers. The first challenge when choosing cells 
is that of differing levels of expression of different markers. If a lowly expressed 
but specific marker is found in a cell profile, this is better evidence of cell type 
than a highly expressed and less specific marker. To address this, we use the 
term frequency-inverse document frequency19 (TF-IDF) transformation when 
generating aggregate marker scores. The TF-IDF transformed matrix is defined by,

Ti;j ¼
Ni;jPm
i¼1 Ni;j

´ log 1þ nPn
j¼1 Ni;j

 !

where Ni,j is the m by n normalized gene expression matrix defined above.
The second challenge we addressed in our aggregate marker score calculation 

was that highly expressed genes have been known to leak into the transcriptional 
profiles of other cells. For example, in samples including hepatocytes, albumin 
transcripts are often found in low copy numbers in non-hepatocyte profiles. To 

address this, we assign a cutoff above which a gene is considered expressed in that 
cell. To determine this cutoff we use a heuristic measure defined as

Ci ¼ 0:25 ´ qi

where Ci is the gene cutoff for gene i and qi is the 95th percentile of T for gene i. 
Any gene i in cell j with a value Ti,j below Ci is set to 0 for the purposes of generating 
aggregated marker scores.

After these transformations, the aggregated marker score is defined by a simple 
sum of the genes defined as markers in the cell marker file,

Sc;j ¼
X

k2Gc

Tk;j

where Sc,j is the aggregated score for cell type c and cell j and Gc is the list of marker 
genes for cell type c. Cells in the 75th percentile and above for aggregated marker 
score S in only one cell type are chosen as good representatives. Any metadata 
specifications (for example, the requirement that a cell type have come from a 
particular tissue) provided in the marker file are then used to exclude cells and 
generate a final training dataset.

Choosing outgroup cells. When choosing outgroup samples for training, we 
wanted to make sure that the outgroup set is not dominated by the most abundant 
cell type. So we cluster a random subset of potential outgroup cells and choose 
equal numbers of random cells from each cluster to make up the outgroup. 
Specifically, we first calculate the first 50 principal components using principal 
components analysis as implemented by the irlba20 R package. Next, we calculate 
jaccard coefficients on a k nearest-neighbors (kNN) graph generated using k = 20. 
Last, we generate clusters using Louvain community detection on the resulting 
cell–cell map of jaccard coefficients. A random set of cells from each resulting 
community is then combined to create the outgroup.

Training with GLMnet. The classifier is trained on the normalized expression 
matrix N for cells chosen as representatives, and for all genes expressed in 
greater than 5% of cells in at least one training set and not expressed in the 
90th percentile of TF-IDF transformed expression in all cell types. This last 
filter prevents ubiquitously expressed genes from being chosen as features. The 
classifier is trained using genes as features and cells as observations with a grouped 
multinomial elastic-net regularized (α = 0.3)17 generalized linear model using the 
package GLMnet21 in R. Observations are weighted by the geometric mean of the 
counts in each of the training groups. The GLMnet regularization parameter λ is 
chosen using three-fold cross validation. Genes provided in the marker files are 
required to be included in the model and are not regularized.

Classifying cells. Because we wished to be able to use pre-trained classifiers to 
classify cells across datasets and platforms, we include a dataset size factor D for the 
training data with the classifier object. D is the geometric mean of the total read 
counts per cell divided by the median number of genes expressed above zero per 
cell. Formally, D is defined by

a ¼
Xm

i¼1

Mi;j

D ¼ exp
1
j

Xj

k¼1

ln ak

" #
´

1
median gf g

where g is the number of genes expressed above zero per cell. When applying an 
existing classifier to a new dataset, we can then transform the new expression data, 
an m′ by n′ matrix M′, to the scale of the training data using D

fj ¼
Pm0

i¼1 M
0
i;j

D ´median g 0f g

N 0 ¼ M0

fj

where g′ is the number of genes expressed above zero per cell in the new data.
After normalization, gene IDs for the new dataset are also converted to 

Ensembl IDs. At each internal node in the classifier, the multinomial model for that 
node is applied to the data, the output probabilities of each class are normalized by 
dividing by the maximum probability for each cell, and the ratio of the top scoring 
cell type to the second-best scoring cell type is calculated. If this odds ratio is 
greater than the user-specified rank probability ratio (in this paper and by default, 
we use 1.5), the top type is assigned, otherwise the cell type is set to ‘Unknown’. 
Optionally, Garnett will add a second set of classifications that classify an entire 
cluster of cells if greater than 90% of assigned cells within a cluster are the same 
type and greater than 5% of all cells in the cluster are classified (not ‘Unknown’) 
and greater than five cells in the cluster are classified. Cluster labels can be 
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provided by the user or generated by Garnett using Louvain community detection 
in the top 50 principal components of the expression matrix.

10X PBMCs. The 10X PBMC datasets from both v.1 and v.2 chemistry were 
downloaded from the 10X Genomics website. The v.1 cells are a combination 
of each of the pure cell type populations isolated by 10X Genomics using 
fluorescence-activated cell sorting (FACS) sorting (CD14+ Monocytes, CD19+  
B cells, CD34+ cells, CD4+ Helper T cells, CD4+/CD25+ Regulatory T cells,  
CD4+/CD45RA+/CD25− Naive T cells, CD4+/CD45RO+ Memory T cells,  
CD56+ Natural killer cells, CD8+ Cytotoxic T cells and CD8+/CD45RA+ Naive 
cytotoxic T cells) preprocessed using CellRanger v.1.1.0 and published in ref. 8. The 
v.2 cells are the v.2 chemistry distributed demonstration dataset labeled ‘8k PBMCs 
from a healthy donor’, preprocessed using CellRanger v.2.1.0. Markers for PBMCs 
were those often cited in the literature. Using Garnett’s marker scoring system, we 
excluded the markers with high ambiguity (>0.5). The final PBMC marker file used 
is available as Supplementary Dataset 1. Garnett classification for v.1 and v.2 was 
run using default parameter values defined in the preceding sections. For testing 
the limits of Garnett (Supplementary Fig. 2), we used a one-level marker file with 
no T cell subtypes defined. To downsample the reads in training and classification 
datasets (Supplementary Fig. 2d,e), we used the downsampleMatrix function from 
the DropletUtils22,23 R package, which uses sampling without replacement per cell 
so that the total reads in that cell is reduced by the specified proportion. For the 
T cell ablation experiment (Supplementary Fig. 2g,h) we removed the T cells from 
the matrix and also set all values of the T cell marker genes to zero.

TM and MCA lung analysis. The TM FACS dataset from ref. 2 was downloaded 
from their figshare website. The MCA dataset from ref. 3 was downloaded from 
their figshare website. For the purposes of this analysis, only data derived from 
lung tissue from both datasets were used. To facilitate comparisons between each 
of the lung datasets used, a set of consensus cell type names were used as described 
in Table 1. The marker file used is available as Supplementary Dataset 2. Garnett 
classification was run using default parameter values for both datasets.

sci-ATAC-seq analysis. The sci-ATAC-seq data was downloaded from the website 
associated with ref. 7. The input to Garnett was the previously calculated Cicero 
gene activity scores presented in the original publication. The final marker file 
used is available as Supplementary Dataset 3. Garnett classification was run using 
default parameter values.

Worm analysis. The worm data was downloaded from the website associated 
with ref. 11. Markers were those used by the original publication to identify cell 
types. Using Garnett’s marker scoring system, we excluded the markers with 

high ambiguity (Supplementary Fig. 6). The final marker file used is available as 
Supplementary Dataset 4. Garnett classification was run using default parameter 
values.

Human lung tumor analysis. The human lung tumor data was downloaded from 
the ArrayExpress database entry associated with ref. 14. Because expression data 
were log-transformed, we exponentiated the expression data before classification. 
To allow for cross-species classification, we first converted the human expression 
data to mouse gene labels by creating a correspondence table using the biomaRt 
hsapiens_gene_ensembl and mmusculus_gene_ensembl databases. Only unique 
rows (one-to-one correspondences) were used. Ultimately 15,336 of the original 
22,180 human genes could be converted to mouse labels including 89% of the 
genes in the MCA classifier with non-zero coefficients. The final marker file used is 
available as Supplementary Dataset 5. Garnett classification was run using default 
parameter values.

Mouse nervous system analysis. The mouse nervous system data and potential 
marker genes were downloaded from the website associated with ref. 12. The final 
marker file used is available as Supplementary Dataset 6.

Software availability. Garnett is an R package available through github.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
No new data was generated for this study. All data used in this study is publicly 
available.
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