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SUMMARY

Identifying the spatial organization of tissues at
cellular resolution from single-cell gene expression
profiles is essential to understanding biological
systems. Using an in situ 3D multiplexed imaging
method, seqFISH, we identify unique transcriptional
states by quantifying and clustering up to 249 genes
in 16,958 cells to examine whether the hippocampus
is organized into transcriptionally distinct subre-
gions. We identified distinct layers in the dentate
gyrus corresponding to the granule cell layer and
the subgranular zone and, contrary to previous re-
ports, discovered that distinct subregions within
the CA1 and CA3 are composed of unique combina-
tions of cells in different transcriptional states. In
addition, we found that the dorsal CA1 is relatively
homogeneous at the single cell level, while ventral
CA1 is highly heterogeneous. These structures and
patterns are observed using different mice and
different sets of genes. Together, these results
demonstrate the power of seqFISH in transcriptional
profiling of complex tissues.

INTRODUCTION

The mouse brain contains �108 cells arranged into distinct

anatomical structures. While cells in these complex structures

have been traditionally classified by morphology and electro-

physiology, their characterization has been recently aided by

gene expression studies. In particular, the Allen Brain Atlas

(ABA) provides a systematic gene expression database using

in situ hybridization (ISH) of the entire mouse brain one gene at

a time (Dong et al., 2009; Fanselow and Dong, 2010; Thompson

et al., 2008). This comprehensive reference provides regional

gene expression information but lacks the ability to correlate

the expression of different genes in the same cell. More recently,
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single-cell RNA sequencing (RNA-seq) has identified many cell

types based on gene expression profiles (Darmanis et al.,

2015; Tasic et al., 2016; Zeisel et al., 2015). However, while

single-cell RNA-seq provides useful information on multiple

genes in individual cells, it has relatively low detection

efficiencies and requires cells to be removed from their native

environment, resulting in the loss of spatial information. These

different approaches can lead to contradictory descriptions of

cellular organization in the brain and other biological systems.

In the hippocampus, recent RNA-seq data suggest that the

CA1 region is composed of cells with a continuum of expression

states (Cembrowski et al., 2016; Zeisel et al., 2015), while ABA

analysis indicates that sub-regions within the CA1 have distinct

expression profiles (Thompson et al., 2008). To resolve the two

conflicting descriptions of hippocampal organization, a method

to profile transcription in situ in the hippocampus with single-

cell resolution is needed. Here, we demonstrate a general tech-

nique that enables the mapping of cells and their transcription

profiles with single-molecule resolution in tissue, allowing

unprecedented resolution of cellular transcription states for

molecular neuroscience (Figure 1A).

A great deal of progress has beenmade recently in developing

highly quantitative methods to profile the transcriptome of single

cells. Building upon single-molecule fluorescence in situ hybrid-

ization (smFISH) (Femino et al., 1998; Raj et al., 2006), Lubeck

and Cai (2012) devised a general method to highly multiplex

single-molecule in situ mRNA imaging regardless of transcript

density using super-resolution microscopy (Betzig et al., 2006;

Rust et al., 2006; Lubeck and Cai, 2012). However, the spectral

barcoding methods used in these previous works is difficult to

scale up beyond 20–30 genes because of the limited number

of fluorophores (Fan et al., 2001; Lubeck and Cai, 2012).

To overcome the scalability problem, a temporal barcoding

scheme was developed that uses a limited set of fluorophores

and scales exponentially with time (Lubeck et al., 2014). Specif-

ically, sequential probehybridizations on themRNAs in fixedcells

impart a unique pre-defined temporal sequence of colors, gener-

ating in situmRNAbarcodes. Themultiplex capacity scales as Fn,

where F is the number of fluorophores and n is the number of

rounds of hybridization. Thus, one can increase the multiplex
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Figure 1. Overview of Sequential Barcode FISH in Brain Slices
(A) A coronal section from a mouse brain was mounted on a slide and imaged in all boxed areas. Each image was taken at 603 magnification.

(B) Example of barcoding hybridizations from one cell in a field from (A). The same points are re-probed through a sequence of 4 hybridizations (numbered). The

sequence of colors at a given location provides a barcode readout for thatmRNA (‘‘barcode composite’’). The genes represented by these barcodes are identified

through referencing a lookup table abbreviated in (D) and quantified to obtain single-cell expression levels. In principle, the maximum number of transcripts that

can be identifiedwith this approach scales to Fn, where F is the number of fluorophores and n is the number of hybridizations. Error correction adds another round

of hybridization.

(C) Serial smHCR is an alternative detectionmethod in which 5 genes are quantified in each hybridization and this process is repeated n times. Serial hybridization

scales as F*n.

(D) Schematic for multiplexing 125 genes in single cells. 100 genes are multiplexed in 4 hybridizations by seqFISH barcoding. This barcode scheme is tolerant to

loss of any round of hybridization in the experiment. 25 genes are serially hybridized 5 genes at a time by 5 rounds of hybridization. Each number represents a

color channel in smHCR. As a control, 5 genes are measured by both double rounds of smHCR as well as barcoding in the same cell.

(E) SmHCR amplifies signal from individual mRNAs. After imaging, DNase strips the smHCR probes from themRNA, enabling rehybridization on the samemRNA

(step a). The ‘‘color’’ of an mRNA can bemodulated by hybridizing probes that trigger HCR polymers labeled with different dyes (step b). Signals from themRNAs

are amplified following hybridization by adding the complementary hairpin pair (step c). The DNase smHCR cycle is repeated on the same mRNAs to construct a

predefined barcode over time.
capacity by increasing the number of rounds of hybridizationwith

a limitedpool of fluorophores.Wecalled this approach sequential

fluorescence in situ hybridization (seqFISH) (Lubeck et al., 2014).

In parallel, in situ sequencingmethodswere developed todirectly

sequence transcripts in tissue sections, but thesemethods suffer

from low detection efficiency (<1%) (Ke et al., 2013; Lee et al.,

2014). Recently, Chen et al. (2015b) expanded the error correc-

tion method in the original seqFISH demonstration by using a

Hamming distance 2 based error correcting barcode system

called MERFISH. However, this implementation requires larger

transcripts (>6 kb) and many more rounds of hybridization than

the method described here (Chen et al., 2015b). Furthermore,

seqFISH and its variants have only previously been applied in

cell culture systems due to the difficulty of smFISH detection in
tissue. Here, we demonstrate an improved version of seqFISH

in complex tissues by including signal amplification (Shah et al.,

2016) and a time-efficient error correction scheme (Figures 1A–

1D and Table S1), allowing us to resolve the structural organiza-

tion of the hippocampus with single-cell resolution.

RESULTS

Signal Amplification andError CorrectionEnableRobust
Detection of mRNAs in Tissues
To overcome the autofluorescence and scattering inherent to

brain tissues, we used an amplified version of smFISH, called

single-molecule hybridization chain reaction (smHCR) (Fig-

ures 1E and S1A) (Choi et al., 2014; Shah et al., 2016). smHCR
Neuron 92, 342–357, October 19, 2016 343
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Figure 2. SeqFISH Generates Accurate In Situ Quantification of mRNA Levels

(A) Image of seqFISH barcoding 100 genes in the outer layer of the mouse cortex. RNA dots in the image are z projected over 15 mm. Individual mRNA points are

shown across 4 hybridizations in the inset images. White squares correspond to identified barcodes, yellow squares correspond to missing transcripts in a

particular hybridization, and red squares correspond to spurious false positives and are not counted in any barcode measurements. Numbers in the squares

correspond to barcode indices.

(B) seqFISH correlates with smHCR counts. Five target mRNAs were measured by both barcoded seqFISH and smHCR in the same cells, providing absolute

counts of the transcripts. The two techniques correlate with an R = 0.85 and a slope (m) of 0.84 (n = 3851 measurements). The 2D histogram intensity shows the

distribution of points around the regression line. A high density of points is seen along the regression line.

(C) Error correction results in a median gain of 373 (25%) counts per cell (n = 3,497). Red and blue curves correspond to the total barcode counts per cell before

and after error correction.

(D) Dropped and off-target barcodes represent a small source of error in seqFISH. 100 on-target barcodes and 525 off-target barcodes are measured per cell.

Dropped barcodes arise from ambiguous cases in which two or more overlapping dots appear within the same region.

(E) Off-target barcodes are rarely observed and contribute minimally to the expression profile in single cells. Each of the 100 on-target barcodes (blue) and 525

off-target barcodes (red) are quantified per cell. The mean is shown with shaded regions corresponding to 1 SD (n = 41 imaged regions).
amplified signal 22.1 ± 11.5-fold (mean ± SD, n = 1338; Fig-

ure S1B) compared to smFISH, enabling robust and rapid detec-

tion of individual mRNAmolecules in tissues and facile alignment

of spots between hybridizations (Figure 2A). Single transcripts

can be detected and localized in 3D with just 24 probes in

tissues, enabling detection of transcripts < 1 kb in size, with a

fidelity comparable to the smFISH gold standard (Figures S1C

and S1D) but with signals 20-fold brighter (Shah et al., 2016).

smHCR DNA polymers can also be digested by DNase and

the mRNA can be re-hybridized in brain slices, allowing HCR-

seqFISH to be robustly implemented (Figure 2A). We note the

smHCR enables true 3D imaging in tissues, whereas the previ-
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ous sequential FISH demonstrations (Lubeck et al., 2014; Chen

et al., 2015b) were performed only in flat cell cultures.

Furthermore, we improved upon our existing barcode system

by implementing a time-efficient error correction scheme. The

major sourceof error in seqFISH is the lossof signaldue tomis-hy-

bridization. We introduced an extra round of hybridization to cor-

rect for loss of signal during any round of hybridization (Figure 1D)

(Supplemental Information). For example, using 5 fluorophores

and 4 rounds (instead of 3 rounds) of hybridization to code for

125 genes, we can still uniquely assign barcodes to genes even

when signal from any single round of hybridization is missing.

Although MERFISH can tolerate 2 errors per barcode, it requires



16 rounds of hybridization to code 140 genes (Chen et al., 2015b).

This largenumberof hybridizations can lead tomore experimental

error and analysis complexity. In comparison, our simple error

correction accounts of the most common error, dropped signal,

while using a minimal number of hybridizations (4 rounds for 125

genes and 5 rounds for 625 genes). Also, the fewer rounds of hy-

bridizations decrease the total imaging time, which is rate-limiting

for tissue experiments. HCR-seqFISH with this simpler error-

correction scheme allows efficient and accurate quantification

of transcription profiles in tissues.

Using this HCR-seqFISH method, we surveyed the regional

and sub-regional transcriptional heterogeneity within the tempo-

ral and parietal cortex and hippocampus of the mouse brain by

imaging similar coronal sections collected from three different

animals. Two similar sections from separate mice were profiled

with probes for 125 genes, while one additional brain slice was

imaged for 249 genes. In each of the coronal slices, between

60 and 80 fields of view were imaged, each 216 mm 3

216 mm 3 15 mm, in the cortex and hippocampus (Figures 1A

and S1E). For the 125 gene set, 56 of the genes (Figure 1D and

Table S1) were selected because they showed spatially hetero-

geneous expression based on the ABA (Lein et al., 2007),

another 44 were selected from a list of transcription factors,

and 25 marker genes were selected from single-cell RNA-seq

datasets (Zeisel et al., 2015). 100 of these genes were barcoded

by 4 rounds of hybridization (Figure 1B). The remaining 25

high-abundance genesweremeasured individually using 5-color

smHCR in 5 serial rounds of hybridizations (Figure 1C). This

hybrid approach of measuring medium expression genes with

barcoding seqFISH and high copy number genes serially in

subsequent hybridizations allows a large dynamic range of

transcript levels to be profiled in the same cell.

seqFISH Is an Accurate and Efficient Method to
Multiplex RNA In Situ
To determine the accuracy of the seqFISHmethod in quantifying

mRNA levels in single cells in tissue, we compared the copy

number of 5 of the 100 target genes measured by barcoding to

the copy number found by smHCR detection in the same cell

(Figures 2B and S2A) in 15 mm brain sections. We found that

the copy number of the RNAs per cell as measured by barcoding

and smHCR agreed with an R value of 0.85 and a slope of 0.84

(n = 3,851). As smHCR matches smFISH transcript quantitation

(Shah et al., 2016), the barcoded seqFISH method can quantify

mRNA molecules in single cells with 84% efficiency compared

to the gold standard of smFISH. In comparison, single-cell

RNA-seq measurements are 5%–20% efficient based on

spike-in controls, and in situ sequencing is less than 1% efficient

(Darmanis et al., 2015; Klein et al., 2015; Lee et al., 2014; Ma-

cosko et al., 2015; Tasic et al., 2016; Zeisel et al., 2015; Ståhl

et al., 2016). This high efficiency of detection results from a low

transcript drop rate and a high barcode recovery rate due to

the error correction round of hybridization. In our experiment,

78.9% of barcodes (n = 2,115,477 barcodes) were detected in

all 4 hybridization rounds, and 21.1% were observed in 3 out

of the 4 hybridizations (Figure 2C), indicating that the probability

of detecting a given mRNA molecule is 94% in each round of

hybridization (Figure S2B).
To quantify the amount of false positive signal due to misalign-

ment of barcodes and nonspecific binding of probes, we

measured the amount of off-target barcodes that were detected.

With four rounds of hybridizations and 5 fluorophores, there were

54 = 625 unique codes. The 100 barcodes assigned to detect

mRNAs were observed in aggregate at 914.8 ± 570.5 counts

per cell (mean ± SD, n = 3,439). In comparison, the 525 remaining

off-target barcodes that were not used were detected at 4.6 ±

4.7 (mean ± SD, n = 3,439) counts per cell (Figure 2D). False

positives, due to chance alignment of nonspecifically bound

spots, contributed minimally to the barcode readouts because

of this three order of magnitude difference in detected barcodes

(on target versus off target). The false positives we observed fall

only on barcodes hamming distance one away from on-target

barcodes, and minimally contribute to undercounting on-target

barcodes (Figure 2E). Furthermore, even the most frequent off-

target barcode was observed 65.57 times less frequently than

the most infrequent mRNA coding barcode (Figures 2E and

S2). Even though during each round of hybridization, 24.8% ±

0.4% (mean ± SE, n = 4 rounds of hybridization) of the spots

were nonspecifically bound probes, barcode miss-assignments

did not occur frequently because non-specifically bound probes

do not reappear in the same location after digestion with DNase

and re-hybridization (Figure 2A). Together, the quantifications of

false positive and false negative barcodes demonstrate that

this method is highly efficient and accurate at detecting RNAs

in situ in single cells within tissues.

Cell Clusters Are Based on Combinatorial Expression
Profiles
We imaged the expression of 125 genes in coronal sections from

two mice for a total of 14,908 cells (Figure S1E). Cortical and

hippocampal cells were segmented based on DAPI and Nissl

staining. A tessellation algorithm was developed to accurately

segment densely packed cells in the hippocampus. To avoid

capturing mRNA from neighboring cells, we contracted by

10% the borders of cells determined by the segmentation

algorithm.

To group the single cell data into distinct transcriptional states,

we Z score normalized the copy number of each transcript in

every cell (Figure 3A and Tables S6 and S7) and hierarchically

clustered the cells to identify cells with similar expression

patterns (Table S2, Figure S3). While these clusters do not

necessarily represent canonical cell types, many of these clus-

ters contain clear transcriptional markers of known cell types

previously identified by single-cell RNA-seq (Figure 3B) (Zeisel

et al., 2015; Tasic et al., 2016). For example, cell clusters 12

and 13 contained clear expression of Gja1, which marks out

astrocytes (Zeisel et al., 2015; Tasic et al., 2016). Cluster 12

also expresses Mfge8, while cluster 13 did not, indicating two

distinct subpopulations of astrocytes (Figure 3B). There are

further subclusters within each of the astrocyte populations

with different spatial localization patterns (Figures S3C–S3E).

Cluster 11 cells expressed Laptm5, a known microglia marker

(Zeisel et al., 2015; Tasic et al., 2016). Cluster 3 expressed inter-

neuron genes, while clusters 1–2 and 4–5 expressed genes

associated with pyramidal neurons (Zeisel et al., 2015; Tasic

et al., 2016). The major clusters were robust to down-sampling
Neuron 92, 342–357, October 19, 2016 345



Figure 3. Distinct Clusters of Cells Exhibit Different Regional Localization in the Brain

(A) Gene expression of 14,908 cells presented as a Z score normalized heatmap.

(B) Regional compositions of 13 cell clusters are visualized as stacked bar plots with the area corresponding to the number of cells in each region. Hippocampal

regions are: CA3, CA1, dentate gyrus (DG). Cortical regions: parietal and temporal. Boxplot of the Z scores of 21 representative genes are plotted for each cell

class. Tick marks correspond to Z score interval of 1, with the second tickmark at Z score 0. Cell-type assignments are shown on the dendrogram. Abbreviations:

hippocampus pyramidal, Hipp; cortex, Cort; dentate gyrus, DG; interneurons, Int; astrocytes, Astro; microglia, mGlia.

(C) Any random subset of 25 genes can recapitulate approximately 50% of the information in the correlation among cells (red), but a larger number of genes is

required to accurately assign cells to cluster using a random forest algorithm (blue) (n = 10 bootstrap replicates; shading is 95%CI), indicating that fine structures

in the data require quantitative measurements of combinatorial expression of many genes.

(D) While the first ten principal components (PCs) explain the coarse structure, a larger number of PCs are required to describe the full data. Explained variation

(green) and accuracy in predicting cell identity using a random forest model (blue).

346 Neuron 92, 342–357, October 19, 2016



the number of cells used in clustering (Figure S4), with some of

the hippocampal pyramidal and glial clusters robustly defined

even with 400 cells. Similarly, principal component analysis

(PCA) visualization of the data (Figure S3H) recapitulated the

major clusters that correspond to astrocyte, microglia, cortical

pyramidal, hippocampal pyramidal, dentate gyrus (DG) granule,

and interneuron cells.

As the cluster distance between different cells is proportional to

the number of differentially expressed genes in the target list, an

unbiased clustering of the 125 gene data without weighting

specific genes should not be interpreted directly as identifying

canonical ‘‘cell types,’’ but rather as grouping cells with different

patterns of genes expression based on the current target list. We

will refer to some of these clusters as pyramidal neurons or

astrocytes for ease of notation, but strictly speaking, they are cells

clusters with expression patterns similar to those of neurons or

astrocytes.

Cell Clusters Show Distinct Regional Localization
Many neuronal clusters mapped to distinct regions in the brain

(Figure 3B). Several classes of pyramidal cells (clusters 1–2)

showed exclusive localization to the hippocampus, while other

classes (4–5) showed predominantly cortical localization. There

wasalsoaclassofcells (cluster7) thatwerealmostexclusivelypre-

sent in the DG. Interestingly, these clusters segregated based

solely on gene expression profiles without adding any spatial

information into the clustering algorithm. These differences in tran-

scriptional statesof neuronscould bedue to intrinsic differences in

the cells or due todifferent local environment and activity patterns.

In contrast, astrocyte, microglia, and other non-neuronal cell

clusters were generally uniformly present in all areas of the brain

(Figure 3B). However, subclusters of astrocytes did localize to

different regions of the brain preferentially (Figure S3E), with

subcluster 12.3 localized preferentially to the cortex, while 12.1

subcluster was uniformly distributed. Similarly, cluster 9 cells

contain subclusters (9.3, 9.5, and 9.6) that localize exclusively

to the DG, while another subcluster (9.1) localizes almost

exclusively to the cortex. The regional localization of neurons is

especially pronounced with cluster 1 and 2 localized almost

exclusively to the hippocampus, with some of the subclusters

localized predominantly to the CA3. Furthermore, while pyrami-

dal cell clusters 4 and 5 are preferentially cortically localized, the

few hippocampal cells in these clusters form their own

subclusters (4.4 and 5.4) (Figure S3E). In cluster 6 cells, many

subclusters with distinct expression profiles are localized almost

exclusively in the CA1, CA3, or the DG (Figure S3C). In contrast,

cluster 7 cells show a relatively homogeneous regionalization

pattern but further subdivide based on combinatorial expression

patterns (Figure S3D). Subclusters of cluster 9 also show signif-

icant regionalization, as subclusters 9.1, 9.3, 9.5, and 9.6 show

localization to the subgranular zone (SGZ) (Figure S3E). Overall,

cell clusters with similar expression profiles exhibited similar

spatial localizations across the brain with a correlation coeffi-

cient of 0.67 (Figure S3G), indicating the existence of archetypal

regional expression patterns and potential spatial markers in the

brain. These results show that the tissue-optimized HCR-

seqFISH approach can directly identify a variety of transcrip-

tional states and quantify broad spatial patterns of expression.
Combinatorial Expression Patterns Define Fine Clusters
While certain cell clusters contain strong expression of marker

genes, not all clusters are defined based on a few genes. How

much power do individual genes or groups of genes have in ex-

plaining the observed cell clusters? To understand this, we

examined whether subsets of genes can recapitulate the

observed clusters (Figures 3C and 3D). We found that any set

of 25 genes recovers about half of the correlation structure in

the cell-to-cell correlation map (Figures 3C and S3I; n = 10

bootstrap replicates). The fact that the selection of any 25 genes

can explain the gross patterns in the data is likely due to the high

correlations among the expression patterns of genes, as shown

in the gene-to-gene correlation map (Figure S3J). Thus, a small

subset of the measured genes can provide sufficient information

to infer the gross transcriptional states of the cells. Similarly,

low-coverage single-cell sequencing methods such as drop-

seq and inDrop (Klein et al., 2015; Macosko et al., 2015) may

capture major categories of cell types because many highly

expressed, detected genes are correlated to other genes that

collectively define cell types.

At the same time, the finer correlation structure in the data,

required to define the cell clusters accurately, can only be

captured with accurate quantitation of many genes (Figures 3C

and 3D). Consistent with this, using a ‘‘random-forest’’ ma-

chine-learning algorithm (Breiman, 2001) to classify cell clusters,

we found that 75 genes are needed to classify cells with 50%

accuracy, indicating that correct cluster assignment requires

more detailed information from many genes (Figure 3C).

Supporting this view, the first 10 principal components (PCs) ex-

plained 59.5% of the variation in the data, while the rest of the

variation required the remaining 115 PCs (Figures 3D and S3F).

The ‘‘random forest’’ algorithm required 10 PCs to predict the

cell cluster assignments with approximately 60% accuracy (Fig-

ure 3D), but accuracy steadily increased with more PCs. These

observations indicated two levels of information in the data:

a coarse level, where large distinctions in cell clusters are

detectable with a few genes, and a fine level, where subtle dis-

tinctions require many more genes.

These results suggest two points experimentally. First, mul-

tiplexing at the level of 20 genes by seqFISH can give broad

cell cluster identification that is not available with 2–3 gene

smFISH experiments. Although single marker genes are useful

for inference, we find that they frequently are not sufficient for

cell classification. For example, all DG specific granule cells

(cluster 7) have Gpc4 and Vps13c as their enriched marker

genes (Figure 3B); yet, Gpc4 and Vps13c are also strongly

expressed in other hippocampal cells outside of the DG, as

seen in both our experiments and the ABA. Thus, smFISH

against Gpc4 and Vps13c alone would not be sufficient to

uniquely identify the DG granule cells. Furthermore, even the

strongly bimodal markers that are known to define cell types

(i.e., Mgfe8, Gja1, etc.) are correlated enough to overall

expression profiles that cells fall into the appropriate cluster

even when these genes are excluded. This point suggests

that while marker genes can be essential in assigning a cell

to a known cell type, they are not necessary to identify unique

clusters in the dataset, provided enough measurements are

made.
Neuron 92, 342–357, October 19, 2016 347
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Figure 4. Spatial Layering of Cell Classes in the Dentate Gyrus

Bottom left panel: cartoon of DG with imaged regions labeled. Color key corresponds to classes in Figure 3B.

(A and B) Suprapyramidal (A) and infrapyramidal (B) blades of DG. Cells of the subgranular zone and granule cells are arranged in lamina layers inmirror symmetric

patterns on the upper and lower blades.

(C) The SGZ stays on the inner layer of the DG fork.

(D) Cells are patterned in the crest.

(E) 3D image of the fork region shown in (C).
Second, accurate measurement of combinatorial expression

of many genes enabled by seqFISH can allow for more specific

cell cluster identification. As a comparison, in single-cell RNA-

seq data, CA1 pyramidal cells are clustered into a single cluster

(Zeisel et. al, 2015; Habib et al., 2016), potentially because of the

relatively lower detection efficiency. In our seqFISH experiments,

measuring hundreds of genes quantitatively, we can resolve

several clusters and subclusters with robust regionalization

within the CA1 (Figure 3B and S3C–S3E).

Cells Are Patterned in the Dentate Gyrus
To further visualize the spatial organization of cells, we mapped

cluster definitions of cells back into the images. In the DG, we

observed a striking lamina layering of cell classes. The two

blades of the DG (Figures 4A and 4B) showed mirror arrange-

ments of cells, with cluster 9 cells, forming the subgranular

zone (SGZ), leading into a granule cell layer (GCL) dominated

by a single cluster of granule cells (cluster 7) (Figure 3B). In

the 125 gene dataset, the cells of the GCL were found to be

dominated by expression of Gpc4 and Vps13c matching ISH

data from the ABA (Figure S8B). Cluster 7 was found to be

further subdivided into 6 subclusters (Figure S3D). These sub-
348 Neuron 92, 342–357, October 19, 2016
clusters were found to have varying levels of calbindin D-28K

(Calb1) expression, which is known to increase with granule

cell maturation (Yang et al., 2015). On the other hand, the cells

of the SGZ were found to be significantly enriched in astrocyte

markers such as Mfge8 and Mertk, which has also been

observed previously (Miller et al., 2013) and in the ABA data

(Figure S8A). However, these cells do not cluster with typical

astrocytes (clusters 12 and 13) because their combinatorial

expression patterns are different from astrocytes, consistent

with their classification as a completely different population

of cells.

In the fork region of the DG, the layer of cluster 9 cells ap-

peared on the interior surface of the fork, followed by a layer

of granule cells (cluster 7) (Figure 4C). A different layering

pattern is seen at the crest of the DG, where astrocytes, micro-

glia, and some other glial cells line the exterior of the crest en-

sheathing the GCL (Figure 4D). In both brains of the 125 gene

experiments, the same cell clusters and spatial arrangements

are observed. Furthermore, because the mRNAs are imaged

in 3D in the 10–15 mm brain slices, we can obtain a 3D view

of the expression profiles, shown in the fork regions of the

DG (Figure 4E).
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Figure 5. Subregions of the Hippocampus Are Composed of Distinct Compositions of Cell Classes

Upper right panel: cartoon of hippocampus with imaged regions labeled. Color key corresponds to the classes in Figure 3B. Images are from a single coronal

section, and cell classes are based on the expression levels of 125 genes.

(A–D) These images are regions from the CA1d. Astrocytes (Astro) aremarked in (A), and amicroglia cell (mGlia) is alsomarked (B). Moving along the hippocampus

from CA1 dorsal to ventral, cell classes transition from a homogeneous dorsal population (C) to a mixed population in the CA1 intermediate. The transition

between the CA1d and CA1i is marked by a dotted line (D).

(E and F) These images are regions from the CA1i. A line has been drawn to show 2 laterally segregated cell classes in the CA1i (E) and arrows indicate cholinergic

interneurons (Int) on the interior surface of the CA1i (E). This lateral segregation of cell classes persists throughout the CA1i (F).

(G–I) These images are regions from the CA1v. The largest amount of cellular diversity in the CA1 is seen in the ventral region starting with (G). The cell-type

composition of the CA1v region remains the same throughout the region (H) down to the ventral-most area imaged (I).

(legend continued on next page)

Neuron 92, 342–357, October 19, 2016 349



Distinct Regions of CA1 and CA3 Are Composed of
Different Combinations of Cell Clusters
While each region of the DG contains similar compositions of

cells, distinct subregions within the CA1 and CA3 contained

different combinations of cell classes (Figures 5 and S6F). In

the CA1, there were 3 distinct regions defined by their individual

cellular compositions. In the dorsal region of CA1 (CA1d), neuron

cluster 6 (enriched in Nell1, a protein kinase C binding protein)

(Table S2) was the major cell class in the pyramidal layer, with

astrocyte, microglia, and other cells (clusters 10–13) intercalat-

ing into the stratum pyramidale (SP) (Figures 5A–5C). Transition-

ing into the CA1 intermediate region (CA1i) (Figure 5D), pyramidal

cell cluster 4 displaced cell cluster 6 as the dominant cell, with

the co-appearance of cluster 1 and 2 pyramidal cells.

As the middle of the CA1i region was reached, a small amount

of cluster 4 pyramidal cells remained, while cluster 1 and 2 pyra-

midal cells dominated (Figures 5E and 5F). Clusters 1 and 2 are

enriched in Nell1 (EGF-like protein), Npy2r (neuropeptide Y re-

ceptor), Slc4a8 (sodium bicarbonate transporter), and B3gat2

(glucuronosyltransferase) (Table S2). The CA1i region displayed

a characteristic spatial organization where glial cells line the

outermost regions, while pyramidal cell clusters 1 and 2 longitu-

dinally partitioned the pyramidal layer. This separation of

the inner versus the outer layers of CA1 matches that observed

previously (Dong et al., 2009). Furthermore, interneurons (cluster

3) were found to preferentially line the inner edge of the pyramidal

layer in the CA1i region (Figures 5E and 5F). This patterning of

interneurons, particularly subcluster 3.1 cells, which were

enriched in Slc5a7, a choline transporter, was consistent with

the patterning of cholinergic interneurons observed with

ChAT-GFP labeling (Yi et al., 2015). Finally, the largest amount

of heterogeneity in the CA1 was seen in the ventral CA1 region

(CA1v), where cell clusters 3, 5, and 10 began to mix in with

clusters 1 and 2 (Figures 5G–5I).

Similarly, the CA3 was found to have transcriptionally distinct

regions with different pyramidal cell compositions and abrupt

transitions. The ventral most region of CA3 contained a high level

of heterogeneity of pyramidal cell clusters (Figures 5J and 5K),

while the intermediate region of CA3 contained a mixture of

cell clusters 1 and 2 (Figures 5L and 5M). As the CA3 progressed

toward the hilus of the DG, the cell types transitioned first to

primarily cluster 4 neurons (enriched in dcx, doublecortin, and

Col5a1, a collagen) (Figures 5N and 5O) and then to almost

exclusively cluster 6 neurons in the region most proximal to the

DG hilus (Figures 5O and 5P). It is interesting to note that while

cluster 6 cells appear in both the CA1 (subcluster 6.8) and CA3

(subclusters 6.1 and 6.4), sub-clusters of 6 show distant regional

localization (Figure S3E), suggesting that the gene expression

differences in CA1 and CA3 cells are captured in the seqFISH

data. We note that similar patterns of homogeneous dorsal and

heterogeneous ventral cell populations are observed when

only hippocampal cells are clustered (Figure S5).
(J–M) These images show regions from the ventral and intermediate CA3. Similar c

adjacent field (K). Field (L) shows similar cell composition as field (M) in the inter

(N–P) The following field (N) shows a slightly different cell class composition from th

cell-type composition. A final transcriptional region in the CA3 is seen in the dorsa

CA1d, but these cluster 6 cells are grouped into a distinct subcluster.
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The regionalized expression patterns we observed in the hip-

pocampusmatch closely to those observed in previous literature

(Thompson et al., 2008; Dong et al., 2009). For example, CA1d,

CA1i, and CA1v boundaries correspond to the boundaries

shown in Figure 2B in Dong et al. (2009). In CA3, the subregions

observed in our experiment match the CA3 subregion 4-7 in

Thompson et al. (2008).

Lastly, we note that the brain slices from the two different mice

probed with the 125 gene set show not only the same subre-

gional structure (Figures 4, 5, and 6), but also the same clusters

of cells (Figure 5 and 6) in the different subregions of the hippo-

campus (Figure S6F). In both brains, the CA1d consists of a

relatively homogeneous population of cluster 6 cells, which tran-

sitions to a mixture of 1 and 2 cells in CA1i, and finally to a

mixture of 1-6 and 10 cells in the CA1v (Figure S6F). These re-

sults together show that the subregions of the hippocampus

are a robust feature in the organization of CA1 and CA3, consist-

ing of cell classes with distinct expression profiles. The stereo-

typical nature of the spatial arrangement of these structures

suggests further experiments with seqFISH and other functional

assays to probe the distinct functions of the different cell clusters

in the CA1 and CA3.

249 Gene Multiplex Experiments Show the Same
Hippocampal Subregions
To further show that the sub-regional structure of the hippocam-

pus is independent of the target genes, we performed a 249 gene

seqFISH experiment on a third coronal section (Table S8). Of

these 249 genes, only 22 genes overlapped with the 125 gene

experiment set. For this set of genes, 214 were selected from a

list of transcription factors and signaling pathway components,

and the remaining 35 were selected from cell identity markers

from another single-cell RNA-seq dataset (Tasic et al., 2016).

The 214 geneswere barcoded by 5 rounds of hybridization, while

the remaining genes were imaged in 7 rounds of non-barcoding

serial hybridization. To quantify the efficiency of this experiment,

4 genes in the barcoding set (Smarca4, Sin3a, Npas3, and

Neurod4) were re-probed with smHCR. The barcoding efficiency

of the 249 gene probe set was found to be 71%with an R value of

0.80 (Figure S6D). In single cells, we detect on average 2,807 ±

1,660 (mean ± SD, n = 2,050 cells) total barcodes.

The same arrangement in the DG was observed in the 249

gene experiment, despite different genes used, indicating robust

identification of the layering in the DG by seqFISH (Figures 7S

and 7T). In particular, the cells in the SGZ are clustered indepen-

dently from cells in the GCL, similar to the layers observed in the

125 gene experiment. In the SGZ cells, we observed enrichment

of Sox11, a key transcription factor in neurogenesis (Miller et al.,

2013). Other transcription factors involved in neurogenesis,NFIA

and Tbr1 are also enriched in the SGZ cells as seen in our data

and the ABA images (Figure S8A). The observations of this

distinct layer in both the 249 and 125 gene experiments and
ell class compositions are found in the ventral-most field of the CA3 (J) and the

mediate regions of the CA3.

e previous fields in theCA3. The next field (O) also shows another change in the

l-most region of the CA3 (P) with a cell class composition similar to that of the
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Figure 6. Mapping of Cell Types to a Second Brain Slice Based on Expression Levels of 125 Genes

Upper right panel: cartoon of hippocampus with imaged regions labeled. Color key corresponds to the classes in Figure 3B.

(A–C) Similar to the cell class compositions shown for the hippocampus in Figure 5, CA1d in this coronal section from a second mouse is composed of mostly

cluster 6 cells. The dorsal-most region of the CA1 (A) shows almost exclusively class 6 cells. This homogeneity continues throughout the CA1d (B) and ends in the

last field imaged in the CA1d (C).

(D–G) The cell class composition changes in the CA1i, shown in (D) and (E) and shifts to a heterogeneous profile in the CA1v (F) before the CA1v terminates (G).

(H–J) The ventral-most imaged region of the CA3 (H) and the adjacent region in the CA3 (I) form a transcriptional territory similar to that in Figure 5. The dorsal-most

imaged region in the CA3 (J) shows another distinct transcriptional territory within the CA3.

(K–M) DG regions show the same cell classes in the suprapyramidal blade (K), infrapyramidal blade (L), and crest (M) of DG and layering pattern of the GCL and

SGZ as shown in Figure 4.
the combined gene enrichment pattern (increased Sox11, Sox9,

NFIA, and Tbr1 in the 249 gene experiment and increasedMertk

and Mfge8 in the 125 gene experiment) suggest that many cells

in this layer are involved in adult neurogenesis in the SGZ. Fig-

ure S7B shows distinctive marker gene expression in the GCL

of the dentate gyrus.

In addition, the same regionalized cellular patterns are

observed in CA1d, CA1i, and CA1v, where different subregions

utilize different cell classes in characteristic ratios (Figure S6G).

As seen with the 125 gene experiment, while the CA1d contains

only a few cell classes and is relatively homogeneous, the CA1v

region ismade up ofmany different cell classes resulting in a high

level of cellular heterogeneity. Furthermore, the distinction be-

tweenCA1 andCA3 cell clusters is clearer in the 249 gene exper-

iment suggesting more resolving power of spatial patterns (Fig-

ures 7A–7K). The 249 gene experiment also suggests that the

CA3 may be composed of 3–4 subregions based on cell cluster

composition (Figures 7L–7R). The cellular heterogeneity of the

CA3 is again shown to mirror that of the CA1, where the cellular
heterogeneity increases along the dorsal to ventral axis. Cells

with distinctive marker gene expression in the hippocampus

are shown in Figure S7A.

DISCUSSION

Single-Cell Data Resolve Cellular Organizations in the
Subregions of the CA1 and CA3
Two conflicting views of the cell types in the hippocampus have

been proposed based on the analysis of the Allen Brain Atlas

data (Thompson et al., 2008) as well as recent RNA-seq data

(Cembrowski et al., 2016; Zeisel et al., 2015). Analysis of the

ABA in situ data showed that distinct subregions of the hippo-

campus expressed different molecular markers, indicating that

the CA1 and CA3 are ‘‘regionalized’’ into distinct substructures

(Fanselow and Dong, 2010; Thompson et al., 2008). However,

recent bulk RNA-seq experiments on the CA1 found that gene

expression patterns changed gradually along the dorsal to

ventral axis, contradicting the sharp boundaries observed in
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the ABA analysis (Cembrowski et al., 2016). Further supporting

this ‘‘continuous’’ cell type view of the hippocampus, analysis

of the single-cell RNA-seq data (Zeisel et al., 2015) identified a

single continuous population of cells in the CA1 region.

Our data provide a single-cell resolution picture of the spatial

organization of cells in the hippocampus and reconcile both

the RNA-seq and the ABA data. While our data mostly supports

a regionalized view of the hippocampus, we observe that a single

cell class does not in general define CA1 and CA3 subregions.

Instead, we observed that different subregions of CA1 and

CA3 are composed of distinct combinations of cell clusters (Fig-

ures 5, 6, and 7). For example, CA1d consists primarily of cluster

6 pyramidal cells (Figures 5A–5C), in addition to the cluster 1,2,

10, and 12 cells, while CA1v consists of a large set of cell classes

including cluster 1–6 and 10 cells, but at different relative abun-

dances (Figures 5, 6, S6F, and S6G). Due to this intermixing of

cell classes in each sub-region, a bulk measurement of

transcription profiles would find a lack of regionalization, but

single-cell analysis with spatial resolution would identify these

distinct regions based on their unique cell class compositions.

Indeed, when we averaged the single-cell expression profile

within each subregion of the CA1, we can reproduce the contin-

uous correlation profiles found by bulk RNA-seq between CA1v,

CA1i, and CA1d (Figure 8) (Cembrowski et al., 2016). The bulk

RNA-seq observation that CA1i lacked specific marker genes

can also be explained. This is in fact consistent with our findings

that CA1i contained cell classes present in both CA1d and CA1v

(Figures 5, 6, and 7). This organization of cell classes is observed

in both the 125 gene experiments as well as in the 249 gene

experiment.

It is worth noting that the complexity of cell populations

observed in the CA1d versus the CA1v matches the functional

differences in CA1. CA1d is responsible for spatial learning

and navigation and contains a higher concentration of place

cells and sends projections to dorsal subiculum and cortical

retrosplenial area (Cenquizca and Swanson, 2007; Jung

et al., 1994; Risold and Swanson, 1996; O’Keefe and Dos-

trovsky, 1971). We observed that CA1d is composed of a

relatively homogeneous population of cells, predominantly of

cluster 6 cells. In contrast, the ventral region is involved in

a variety of cognitive tasks, such as stress response and

emotional and social behavior (Cenquizca and Swanson,

2007; Jung et al., 1994; Fanselow and Dong, 2010;

Kishi et al., 2006; Muller et al., 1996; Petrovich et al., 2001;

Pitk€anen et al., 2000; Saunders et al., 1988; Witter and Ama-

ral, 1991; Yi et al., 2015). Correspondingly, we observed a

large set of cell classes in the CA1v regions. It is intriguing

to hypothesize that the different cell classes identified based

on molecular profiles may correspond to neurons with distinct

connectivity and functional patterns. This hypothesis can be

investigated in future experiments combining anterograde

tracing as well as electrophysiological recording followed by

seqFISH.

SeqFISH Cell Classes versus Single-Cell RNA-Seq Cell
Types
RNA-seq measurements at the whole-transcriptome level define

cell types based on highly variable genes. On the other hand,
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seqFISH provides highly accuratemeasurements of fewer genes

but uses the combinatorial expression patterns to group cells

into clusters. However, because only 100–200 genes are tar-

geted in the seqFISH experiments, not all of the ‘‘cell types’’

are equally represented in the gene list and seqFISH cannot cat-

alog ‘‘cell types’’ in the same fashion that single-cell RNA-seq

can. For example, in our 125 gene experiments, we cannot

resolve the distinct subpopulation of interneurons because we

lacked marker genes such as Vip and Sst. seqFISH and RNA-

seq provide two different, yet complementary, levels of resolu-

tion into the transcriptional profiles of cells. RNA-seq measures

the transcription levels of thousands of genes, but at a lower

quantitative accuracy, while seqFISH measures only hundreds

of genes, but with much greater quantitative power. The differing

nature of the two sets of data informs how the data should be

analyzed and interpreted. Thus, seqFISH and single-cell RNA-

seq have complementary roles in elucidating distinct cell sub-

populations in tissues. SeqFISH could be applied to find finer

distinctions within cell types found by RNA-seq or to look at

the spatial patterning of cell types found by RNA-seq.

SeqFISH Provides a Generalized Method to Multiplex
mRNA Imaging in Tissues
seqFISHwith amplification and error correction provides a highly

quantitative method to profile hundreds of mRNA species

directly in single cells within their native anatomical context.

Our method of stripping the probes from the RNA has many ad-

vantages. DNase digestion of probes allows false positives to be

rejected, as nonspecifically bound probes do not colocalize be-

tween different rounds of hybridization (Figure 2A). In addition,

the same region of the transcript can be hybridized in every

round, allowing seqFISH to efficiently target mRNAs shorter

than 1 kb, enabling targeting of most genes. Lastly, seqFISH al-

lows exponential scaling of barcode numbers; thus, 4–5 rounds

of hybridization can code for hundreds of transcripts with a

simple error correction scheme. Theoretically, the entire tran-

scriptome can be coded for with error correction by using 8–9

rounds of hybridization with seqFISH. These advantages of

HCR-seqFISH allow robust multiplexed RNA detection in tis-

sues, shown here in the mouse brain.

Ultimately, the multiplexing capability of seqFISH is limited by

the amount of optical space within a cell, and not by the coding

capacity of the method (Supplemental Information). We showed

previously that super-resolution microscopy can significantly in-

crease the optical space available in the cell for transcription

profile imaging, but super-resolution microscopy experiments

proved difficult to image in samples thicker than 1 mm and

were experimentally cumbersome and time consuming to image

(Lubeck and Cai, 2012). A recent development in expansion

microscopy as well as correlation methods (Coskun and Cai,

2016), however, offers promise for multiplexing to levels of

high transcript density (Chen et al., 2015a, 2016; Treweek

et al., 2015; Yang et al., 2014). In addition, by labeling subcellular

components (i.e., dendrites and axons) with antibodies, the local

transcriptome (Cajigas et al., 2012) in compartments of the cell

can be measured.

We observed that, because expression patterns among

genes are highly correlated, the distinction between large
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Figure 8. Correlations of the Transcription Profiles across the Pyramidal Layer

(A) mRNA counts in the cell bodies in the stratum pyramidale (SP) are grouped within each field of view. A single cell in the stratum radiatum (SR) is shown to

illustrate individual mRNA localization. Stratum oriens (SO) is labeled for orientation.

(B) mRNAs in different subregions of the pyramidal layer show both long-distance spatial correlations as well as local correlations between neighboring fields.

Both CA1 and dentate gyrus (DG) show high regional correlations. Correlation is calculated based on data from the 125 gene experiment.

(C) Illustration of regional and long-distance correlation patterns observed in (B). Correlated regions are colored, and long-distance correlations are shown as

dotted lines with their median correlation coefficient written over the dotted line.
classes of cells can be determined from 10–20 genes, while a

finer classification of cell clusters depends on the quantitative

measurement of the combinatorial expression patterns of

many genes (Figures 3C and 3D). This correlation among genes

can be used to ‘‘stitch’’ our seqFISH data with single-cell RNA-

seq data, similar to the approach explored with single-cell

RNA-seq and ISH in Satija et al. (2015). By correlating seqFISH
Figure 7. Mapping of Cell Types to a Third Brain Slice Based on Expre

Upper right panel: cartoon of hippocampus with imaged regions labeled. Color k

(A–C) Similar to the slices shown in Figures 5 and 6, CA1d is relatively homogen

predominantly class 15 cells. This homogeneity continues throughout the CA1d

(D–G) Images from the CA1i region show that the cell class composition is differen

the CA1d to predominately class 14 and 16 cells in the CA1i (D). This particular c

terminating in the final field of the CA1i (G).

(H–K) Again, similar to Figures 5 and 6, images from the CA1 ventral regions show

heterogeneity. The CA1v begins at field (H), and the increased heterogeneity in ce

the CA1 terminates (K).

(L–R) Images from the CA3 region show that the cellular compositions also

CA3 subregions mirrors that of the CA1, where the ventral region of the CA

homogeneous (Q). Field (M) in CA3v shows cellular composition heterogeneit

CA3. The final transcriptional subregion within the CA3 begins in field (P) with a

the CA3 (R).

(S and T) The suprapyramidal (S) and infrapyramidal (T) blades of theDG region sho
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data to single-cell RNA-seq expression data, cells types

identified based on RNA-seq can be ‘‘mapped’’ back into our

seqFISH data.

As shown here, seqFISH with hundreds of genes in tissues can

become a general and widely used tool to answer a wide range of

fundamental questions inbiologyandmedicine. For neuroscience,

by combining the insights into the spatial organization of
ssion Levels of 249 Genes

ey corresponds to the classes in Figure S6C.

eous in cell cluster composition. The dorsal-most region of the CA1 (A) shows

(B), ending in the last field imaged in the CA1d (C).

t from that of the CA1d. Cell classes switch from predominately class 15 cells in

omposition of cells is seen in the following field (E) and the field after that (F),

a much more complicated cellular composition and a high degree of cellular

ll composition is seen in both adjacent field (I) and field (J) up to the point where

create 3–4 subregions within the CA3. The cellular heterogeneity of the

3 is very heterogenous (L), while the dorsal region of the CA3 is relatively

y similar to field (N). Field (O) also has a unique cellular composition in the

predominance of type 12 and 17 cells. This region continues until the end of

w the distinct SGZ versusGCL layering pattern seen in the previous two brains.



transcriptionprovidedbyseqFISHwithconnectomicsandelectro-

physiological measurements, we can obtain a comprehensive un-

derstanding of the molecular basis of the neuroanatomy of the

brain.

EXPERIMENTAL PROCEDURES

Probe Design

Genes were selected from the Allen Brain Atlas database. We identified genes

that are heterogeneously expressed in coronal sections containing the hippo-

campus at Bregma coordinates �2.68 mm anterior. We selected 100 genes

that had high variances across these distinct regions and that also had low

to medium expression levels. Probe sequences were designed using software

developed in house. Full details are described in the Supplemental Experi-

mental Procedures.

Probe Generation

All oligoarray pools were purchased as 92k synthesis from Customarray Inc.

Probes were amplified from array-synthesized oligo pool as previously

described (Beliveau et al., 2012; Chen et al., 2015b). Full details are described

in the Supplemental Experimental Procedures.

Brain Extraction and Sample Mounting

C57BL/6 with Ai6 Cre-reporter (uncrossed) (Jackson Laboratories, SN:

007906) female mice aged 50–80 days were anesthetized with isoflurane ac-

cording to institute protocols (protocol #1701-14) (Madisen et al., 2012).

Mice were perfused with 4% PFA, and the brain was dissected out and placed

in a 4% PFA buffer for 2 hr at room temperature. The brain was then immersed

in 4�C 30% RNase-free Sucrose/13 PBS until the brain sank. Once sunk, the

brain was embedded in OCT and sectioned. Full details are described in the

Supplemental Experimental Procedures.

Sample Permeabilization, Hybridization, and Imaging

Sectionswere permeabilized in 4�C70%EtOH for 12–18 hr. Brainswere further

permeabilized by the addition of RNase-free 8%SDS. A hybridization chamber

was adhered around the brain section. RNA integrity test probes were hybrid-

ized overnight at 37�C in hybridization buffer (Table S3). Samples were washed

in 30% wash buffer (WB) for 30 min. Probes were amplified. Following amplifi-

cation, sampleswerewashed in the same30%WBfor at least 10min to remove

excess hairpins. Samples were stained with DAPI and submerged in pyranose

oxidase antibleaching buffer (Lubeck et al., 2014). If theRNAwas deemed to be

intact, DAPI data were collected in this hybridization. Samples were digested

with DNase I for 4 hr at room temperature on the scope. Following DNase I,

the sample was washed several times with 30% WB and the probes were hy-

bridized overnight (Tables S4). Samples were again washed and amplified.

Repeating this cycle with the appropriate probes for each hybridization bar-

coded the transcripts over multiple rounds of hybridization. Fluorescent Nissl

stain was collected at the end of the experiment along with images of multi-

spectral beads to aid chromatic aberration corrections. Full details are

described in the Supplemental Experimental Procedures.

Image Processing

The images were first corrected to remove the uneven illumination profiles

in each channel and the effects of chromatic aberration. The background in-

tensity in the images was then subtracted. Full details are described in the

Supplemental Experimental Procedures.

Image Registration

The processed images were then registered by first taking a maximum

intensity projection along the z direction in each channel. All of the maximum

projections of the channels of a single hybridization were collapsed, resulting

in 4 composite images each containing all the points in a particular round of

hybridization. Each of these composite images of hybridization 1–3 was then

cross-correlated individually with the composite image of hybridization 4,

and the position of the maxima of the cross-correlation was used as the trans-

lation factor to align hybridizations 1–3 to hybridization 4.
Cell Segmentation

For cells in the cortex, the cells were segmented manually using the DAPI

images taken in the first round of hybridization and the fluorescent Nissl stain

taken at the end of the experiment. Furthermore, the density of the point cloud

surrounding a cell was taken into account when forming cell boundaries,

especially in cells that did not stain with the Nissl stain. For the hippocampus,

the cells were segmented by first manually selecting the centroid in 3D of each

DAPI signal of every cell. Transcripts were first assigned based on nearest

centroids. These point clouds were then used to refine the centroid estimate

and create a 3D voronoi tessellation with a 10% boundary-shrinking factor

to eliminate ambiguous mRNA assignments from neighboring cells. Regional

segmentation was performed manually using the ImageJ ROI tool.

Barcode Calling

The potential mRNA signals were then found by LOG filtering the registered im-

ages and finding points of local maxima above a specified threshold value.

Once all potential points in all channels of all hybridizations were obtained,

dots were matched to potential barcode partners in all other channels of all

other hybridizations using a 1-pixel search radius to find symmetric nearest

neighbors. This procedure was repeated using each hybridization as a seed

for barcode finding, and only barcodes that were called similarly in at least 3

out of 4 rounds were used in the analysis. The number of each barcode was

then counted in each of the assigned cell volumes. Full details are described

in the Supplemental Experimental Procedures.

Clustering

To cluster the dataset with two brains probed with 125 genes, we first Z score

normalized each of the slices based on gene expression (Tables S5 and S6).

Once the single-cell gene expression data were converted into Z scores, we

computed a matrix of cell-to-cell correlations using Pearson correlation coef-

ficients for all of the cells in the two brains. Then hierarchical clustering with

Ward linkage was performed on the cell-to-cell correlation data using cells

taken from the center of the field of view. To analyze the robustness of individ-

ual clusters, a random forest model was trained using varying subsets of the

data and used to predict the cluster assignment of the remaining cells (Brei-

man, 2001). For Figures 4, 5, and 6, the entire field of cells was classified using

the clustered cells as the training set. A bootstrap analysis by dropping

different sets of cells was performed in increments (Figure S4). To determine

the effect of dropping out genes on the accuracy of the clustering analysis,

we used a random forest decision tree to learn the cluster definition based

on the 125 gene data. Then we asked the decision tree to re-compute the clus-

ter assignment on cell-to-cell correlation matrices with fewer and fewer genes

(Figures 3C and 3D, green line). Bootstrap resampling was also performedwith

this analysis (Figures 3C and 3D, blue lines). The PCA and stone analyses were

performed using the same cell-to-cell Z scored Pearson correlation matrix.

The cell-to-cell correlation in Figure S3I was calculated with an increasing

number of principal components dropped (have their eigenvalues set to

zero). The cluster assignment accuracy was again computed through the

random forest decision tree. The 249 gene experiment was clustered indepen-

dently with Z score normalized data.
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