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SUMMARY

Intrathymic T cell development converts multipotent
precursors to committed pro-T cells, silencing pro-
genitor genes while inducing T cell genes, but the
underlying steps have remained obscure. Single-
cell profiling was used to define the order of regulato-
ry changes, employing single-cell RNA sequencing
(scRNA-seq) for full-transcriptome analysis, plus
sequential multiplexed single-molecule fluorescent
in situ hybridization (seqFISH) to quantitate function-
ally important transcripts in intrathymic precursors.
Single-cell cloning verified high T cell precursor fre-
quency among the immunophenotypically defined
‘‘early T cell precursor’’ (ETP) population; a discrete
committed granulocyte precursor subset was also
distinguished. We established regulatory phenotypes
of sequential ETP subsets, confirmed initial co-
expression of progenitor with T cell specification
genes, defined stage-specific relationships between
cell cycle and differentiation, and generated a pseu-
dotime model from ETP to T lineage commitment,
supported by RNA velocity and transcription factor
perturbations. This model was validated by develop-
mental kinetics of ETP subsets at population and
clonal levels. The results imply that multilineage prim-
ing is integral to T cell specification.

INTRODUCTION

Generation of T cells begins in postnatal mice asmultipotent pre-

cursor cells enter the thymus from bone marrow and undergo

multiple rounds of proliferation and differentiation events before

T lineage commitment (Porritt et al., 2003; Rothenberg et al.,

2008; Taghon et al., 2005; Yui et al., 2010). While many key reg-

ulators of T cell specification and commitment are known (Yui

and Rothenberg, 2014), the types of thymic T cell progenitors

and the steps that they undergo to initiate commitment remain

unclear.

Early T cell progenitors (ETPs), cells double-negative (DN) for

CD4 and CD8 that are Kit+ CD44+ CD25�, represent the earliest

defined stage in each cohort of mouse thymocytes. After
C

�1 week of proliferation and differentiation under the influence of

environmental signals, including Notch ligands and cytokines

from the thymic stroma, ETPs asynchronously progress into the

DN2astage,markedbyupregulationofsurfaceCD25 (Il2ra) (Porritt

et al., 2003) (Figure 1A). Commitment follows in a separate step,

coinciding with upregulation of transcription factor Bcl11b and

global changes in chromatin landscapes (Hu et al., 2018; Ikawa

et al., 2010;Kuehet al., 2016; Li et al., 2010).However, ETPs them-

selves are poorly characterized before they progress to DN2a

stage. While single-cell colony assays show that many ETPs are

individuallymultipotent aswell as T cell competent (Bell andBhan-

doola,2008;Wadaetal., 2008), noneof theETPmarkersareexclu-

sive to T cells, so ‘‘ETPs’’ could also include committed non-T line-

age precursors. In addition, T cell precursors can migrate to the

thymus from different hematopoietic precursor states (common

lymphoid progenitor [CLP] and lymphoid-primed multipotent pro-

genitor [LMPP]) (Saran et al., 2010) (Figure 1A). Thus, in a ‘‘snap-

shot’’ of single ETP transcriptomes, there could be heterogeneity

due to different input origins, different developmental stages,

and/or contamination with cells committed to alternative fates.

The expression of important regulators in early T cell develop-

ment has mostly been studied in bulk populations. Notch1

signaling (Besseyrias et al., 2007; Pui et al., 1999; Radtke

et al., 1999) and transcription factors GATA3 and TCF1 (en-

coded by Tcf7) play indispensable roles to establish T cell iden-

tity from the earliest stages (Garcı́a-Ojeda et al., 2013; Germar

et al., 2011; Hosoya et al., 2009; Schilham et al., 1998; Scrip-

ture-Adams et al., 2014; Ting et al., 1996; Weber et al., 2011).

With Notch1, Gata3, and Tcf7, other regulators more widely

shared (Myb, Gfi1, Runx1, and Tcf3) are also essential for cells

starting the T cell pathway. Expression of these genes is readily

detectable in the ETP population by bulk RNA analysis, but in an

unknown fraction (De Obaldia and Bhandoola, 2015; Mingue-

neau et al., 2013; Yui and Rothenberg, 2014; Yui et al., 2010;

Zhang et al., 2012). Further, many legacy ‘‘non-T’’ genes, asso-

ciated with ‘‘stemness’’ and/or non-T lineage fates, are also

expressed at low levels in early pro-T cell populations, including

several with potential gene network interactions with the ‘‘T

cell’’ regulators (Longabaugh et al., 2017; Yui and Rothenberg,

2014). It is unclear if they are an integral part of the T lineage

program or merely expressed in contaminating cells. In the

former case, the expression of stem and progenitor ‘‘non-T’’

genes may be indicators of multilineage priming and/or impor-

tant regulatory network relationships between the declining

stem cell program and ongoing T cell specification. The
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Figure1. High T Cell Precursor Frequency in ETP Cells and Bulk Population Gene Expression Comparison with DN2a Cells

(A) Schematics of early T cell developmental stages, checkpoints, associated key developmental markers, and previously unresolved questions addressed in

this study.

(B) Diagram of clonal culture and imaging methods for following the development of individual sorted ETP cells and a representative false color image of the

progeny of an ETP clone (top, well diameter shown �250 mM). Histogram plots showing the numbers of ETP clones with different percentages of CD25+

(magenta) or Bcl11b+ (cyan) cells on day 6 of culture (n = 66 viable clones) (bottom).

(C and D) Heatmaps of bulk RNA-seq measurements on Flt3+ and Flt3� ETP and Bcl11b� (uncommitted) and Bcl11b+ (committed) DN2a-sorted populations.

Color scales indicate raw expression levels as log(FPKM + 0.1), without row normalization. Some samples were sequenced with pre-amplification, indicated (O)

(see STAR Methods). (C) Clustered expression heatmap of bulk RNA-seq measurements for genes differentially expressed between all ETP and committed

Bcl11b+ DN2a cells (n R 3, adj. p value < 0.05, fold change R 2 either way, also see Table S1). Representative non-T or stem-progenitor genes are labeled. (D)

Selected key genes involved in T development, on the same populations as in (C).
single-cell expression patterns of these genes relative to T cell

genes are essential to elucidate the significance of their expres-

sion in T cell development.
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Single-cell transcriptional profiling by RNA-seq (scRNA-seq)

has transformed our understanding of hematopoietic differentia-

tion and heterogeneity (Boudil et al., 2013; Giladi et al., 2018;



Ishizuka et al., 2016; Karamitros et al., 2018; Knapp et al., 2018;

Olsson et al., 2016; Paul et al., 2015; Pina et al., 2012; Tusi et al.,

2018; Velten et al., 2017; Zandi et al., 2012; Zheng et al., 2018),

providing nominally unbiased full-transcriptome information and

effectively separating distinct cell types within complex popula-

tions. However, in most scRNA-seq applications, the accuracy

and robustness of measurement are biased toward highly ex-

pressed genes, which mostly characterize already-diverged

developmental end states. Here, the goal is to resolve a contin-

uum of changing transcriptome states within a developmental

pathway and relate them to changes in the controlling regulatory

network state. This demands accurate, statistically robust

quantitation of regulatory genes encoding key transcription

factors (TFs), which are often expressed at low RNA copy

numbers per cell. Therefore, we have taken advantage of recent

advances in single-molecule fluorescence in situ hybridization

(Raj et al., 2006), which visualizes and counts individual mRNA

transcripts directly in individual cells at very high sensitivity.

Recently, a version incorporating a temporal barcoding scheme,

‘‘seqFISH (sequential single-molecule fluorescent in situ hybrid-

ization),’’ has been developed that uses a limited set of fluoro-

phores but can detect hundreds to thousands of distinct

sequences in the same cells (Lubeck et al., 2014; Shah et al.,

2016a, 2016b), and another similar strategy, ‘‘merFISH (multi-

plexed error-robust fluorescent in situ hybridization),’’ has also

been described (Chen et al., 2015). We have used the highly sen-

sitive seqFISH technique to quantify transcripts of a curated

panel of 65 regulatory and developmental state marker genes

in pro-T cells.

Thus, combining droplet-based scRNA-seq, deep-sequenced

whole-transcript scRNA-seq, and seqFISH for key regulatory

genes, together with developmental assays of sorted subsets

and clones from sorted founders, we have characterized the

sequence of gene expression transitions in early intrathymic

mouse T cell precursors and regulatory gene dynamics of

T cell specification. Our results show an unexpectedly complex,

multistep progression through which the cells shed stem cell

characteristics and approach T cell lineage commitment. The re-

sults give new insights into the transition from multipotency to

commitment and how it is controlled.

RESULTS

Single-Cell Developmental Competence and Bulk
Population Phenotype of ETPs
Broad outlines of mouse T cell development are well studied,

but the initial events upon entry of T cell precursors into the

thymus remain obscure. Most uncertain are events that occur

within the ETP population and in transition to DN2a. While later

stages are clearly defined as shown in Figure 1A, ETPs are

rare, individually multipotent, and poorly separable by flow

cytometry from other, irrelevant multipotent precursors. How-

ever, vital regulatory events including the exclusion of B cell

potential (Heinzel et al., 2007) and epigenetic priming of the

cells for later commitment (Kueh et al., 2016; Ng et al., 2018)

occur during the ETP stage(s). Thus, we have investigated

whether different precursors contribute functional ETP starting

state(s); their precise sequence of regulatory state changes

leading to T lineage commitment; and whether they develop
by single or branched pathways. In Figures S1A and S1B,

we summarize the logical sequence of questions addressed,

the experimental approaches, and the data-handling pipeline.

To characterize the earliest mouse thymic T cell progenitors

through T lineage commitment, we used fluorescence-activated

cell sorting (FACS) of DN cells to isolate the ETP and DN2a sub-

sets (cf.1a). Only a tiny fraction of total thymocytes (<0.01%) at

steady state are uncommitted ETP and DN2a cells, distin-

guished from all others by their expression of growth factor re-

ceptor c-Kit (gene name Kit). Expression of a Bcl11b-YFP knock

in reporter (Kueh et al., 2016) that distinguishes uncommitted

(YFP�) from newly committed (YFP+) DN2a cells was used to

mark the commitment milestone (Figures 1B and 1C; Table

S1). Another growth factor receptor, Flt3, has been reported to

characterize the least mature ETPs (Ramond et al., 2014; Sam-

bandam et al., 2005), and inmany experiments we used it to sub-

divide ETPs either by FACS or in silico.

To estimate the fraction of ‘‘ETPs’’ that actually possess T line-

age developmental potential, we carried out single-cell clonal

culture experiments. Individual ETP cells were plated in micro-

wells and tracked by live imaging in T cell development culture

conditions to determine how many could generate progeny

that reach DN2 stage and undergo commitment (Figure 1B,

top; see STAR Methods). Of 78 founder ETPs, 66 survived and

were tracked for 6 days. Almost all clones generated cells ex-

pressing CD25 and Bcl11b-YFP by day 6 (Figure 1B, bottom).

Two of the 66 clones only produced small non-T lineage cells

resembling granulocytes, consistent with alternative lineage

affiliation, as discussed below. Thus, >90% of viable clonogenic

ETPs possessed T lineage precursor activity.

Bulk RNA expression patterns showed that ETP populations

were clearly distinct from DN2a populations, with many of the

differences reflecting downregulation of ETP-expressed genes

in DN2a (Figures 1C and 1D). ETP populations expressed

many characteristic ‘‘non-T’’ genes, including genes expressed

in mature granulocytes, macrophages, dendritic cells (DCs),

natural killer (NK) cells, and stem cells but not in mature

T cells (www.immgen.org) (Figure 1C), consistent with previous

bulk RNA expression studies (Mingueneau et al., 2013; Rothen-

berg et al., 2016; Yui and Rothenberg, 2014). Both uncommitted

and committed DN2a cells expressed lower levels of multipo-

tent progenitor-associated genes Flt3, Lmo2, and Mef2c than

ETPs, although the DN2a cells continued to express another

multipotency-associated gene, Spi1 (encoding transcription

factor PU.1) (Figures 1C and 1D). In contrast, sorted Flt3+ and

Flt3� ETP populations appeared similar, and both expressed

the essential T cell regulatory genes Gata3 and Tcf7, implying

that at least some ETPs have started T lineage specification

(Figure 1D). Such population-level analysis raised the question

of how many substates were comprised in ETPs, how homoge-

neously cells progressed through them, and which states re-

flected the presence of contaminating cells with no T cell

potential.

To determine the sequence of developmental changes in these

earliest pro-T cells, we FACS-purified Kithigh thymocytes across

the ETP-DN2 developmental continuum and analyzed their sin-

gle-cell transcriptomes and also their developmental potentials

(Figure S1C). To anchor the developmental direction, for most an-

alyses, we also added a small number of purified committed DN3
Cell Systems 9, 321–337, October 23, 2019 323
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Figure 2. High Sensitivity Measurement and Co-expression of Key Regulatory Genes in Single Early Pro-T Cells Using seqFISH

(A) Experimental design for seqFISH analysis with FACS enriched cells.

(B) Transcript distributions of genes in thymic ETP (cKithigh,Kit transcriptR 5, Il2ra transcript% 3, n = 890) and DN2 (cKithigh,Kit transcriptR 5, Il2ra transcript > 3,

n = 1,984) cells, in cells from 4-week-old-animals as detected by seqFISH.

(C) Gene-Gene Pearson distance heatmap of co-expression of genes measured based on 2,963 ETP-DN2 cells plus 1,587 DN3 cells.

(D and E) Clustering analysis of seqFISHdata for 4,550 cells across ETP-DN3 stages. The SLMalgorithmwas used based on PC1–6 of size-normalized data for 65

genes. Heatmap of genes enriched in expression in each sub-cluster, ordered based on connectivity in tSNE and reflecting developmental progression (Wilcoxon

(legend continued on next page)
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cells (Figure S1C). The transcriptomes of these samples were

defined by three methods: seqFISH, whole-transcriptome

30-end biased sequencing (10X Chromium), and whole-transcrip-

tome full-transcript sequencing (FluidigmC1-SmartSeq2). Results

from these methods were highly concordant but highlighted

different aspects of the gene expression programs.

Sensitive Monitoring of Developmentally Important
Regulatory Genes in Single Cells by seqFISH
Expression in ETP populations of the essential T cell regulatory

genes,Gata3 and Tcf7, appeared in accord with their high clono-

genic T cell precursor frequency overall, but, single-cell methods

were needed to determine which ETP subsets activate these

T cell regulators. First, we sought to determine whether the

ETPs expressing characteristic multipotent progenitor-associ-

ated regulatory genes included the individual cells entering the

T cell pathway. However, as shown in Table S1 and in previous

studies, regulatory genes have bulk RNA-seq signals measured

at <10 FPKM (fragments per kilobase of transcript per million

mapped), below the robust detection limit of common single-

cell approaches (also see below). We therefore applied a tar-

geted seqFISH approach, focused on a curated set of regulatory

and lineage-informative genes. Most of these 65 genes are

known to be functionally significant in early T or multipotent pro-

genitor cells (Hosokawa et al., 2018a; Rothenberg et al., 2016;

Yui and Rothenberg, 2014), while others are distinctive markers

for stages in T and non-T pathways (genes and criteria for selec-

tion shown in Table S2). Probes for 54 genes with low to medium

expression levels were used in barcoding rounds of seqFISH

with hybridization chain reaction (HCR-seqFISH), followed by

sequential rounds of non-barcoding HCR single-molecule FISH

(HCR smFISH) to detect the remaining genes, including highly

expressed genes, controls, and genes with shorter transcripts,

and finally followed by immunofluorescent staining (Figure 2A;

see STAR Methods). Analyses used sorted populations of

ETP-DN2a from mice of 3 different ages (4 week, 2,874 cells;

5 week, 4,413 cells; 8 week, 1,736 cells) (Figures S2A and

S2C), plus similar numbers of DN3s from the same animals

imaged in separate lanes of hybridization-cells.

As detailed in Figures S2A–S2C, seqFISHmeasurements were

sensitive and reproducible across all three ages tested in inde-

pendent experiments without batch correction. It faithfully de-

tected critical genes like Tcf7 and Notch1 that were hard to

detect consistently in ETPs with 10X Chromium scRNA-seq (Fig-

ures S2B and S2D). Furthermore, protein and seqFISH RNA

expression (c-Kit, PU.1 and TCF-1 protein versus Kit, Spi1,

and Tcf7) correlated in the same cells (Figures S2E and S2F).

SeqFISH Reveals Co-expression of Stem or Progenitor
Cell and T Cell Regulators in Individual ETPs
SeqFISH confirmed regulatory state differences between Kit-

high cells categorized as ETP or DN2 based on expression

of Il2ra (CD25). DN2s expressed lower levels of multiple ETP-

associated genes (Flt3, Cd34, Mpo, and Lmo2) while a subset
rank sum test with threshold of 0.2 andminimum fraction of expressing cellsR 0.2

clusters.

(F) Pairwise scatter plots, overlaid with color-coded density contours, of copy nu

Bcl11b and of ‘‘non-T’’ gene Mpo and growth-control gene Pim1. ETP and DN2
expressed much higher levels of the commitment-associated

gene Bcl11b (Figure 2B). Pairwise co-expression patterns of

the seqFISH gene set among all ETP-DN3 cells sampled (Fig-

ure 2C) clearly distinguished a ‘‘T-associated’’ group of genes,

including a subset highly co-expressed in DN3s (Ptcra, Rag1,

Cd3e, Cd3g, Spib, Tcf12, and Lef1), from at least two other

gene groups containing co-expressed ‘‘ Stem and Progenitor’’

genes (Kit, Spi1, Lyl1, Bcl11a, Runx3, Pim1, Erg, Cd34, Hhex,

Lmo2, and Cd44). Each of these stem-progenitor gene groups

also contained genes normally associated with non-T cells

(e.g., Mpo, Irf8, and Pdgfrb) (Figure 2C). In addition, other sepa-

rate gene subgroups contained Gata3 and Ikaros (Ikzf) family

TFs, plus their interaction partners found in T and innate-

lymphoid cells (Zfpm1, Gfi1, and Zbtb16). These ‘‘T or ILC’’

groups of genes showed intermediate correlation both with the

stem-progenitor genes and with the T-associated genes.

The seqFISH results enabled the cells to be resolved into 9 clus-

ters (Figures 2D and 2E), based on high-dimensional analysis us-

ing smart local moving (SLM) clustering (Waltman and van Eck,

2013). Clusters were provisionally ordered by known ‘‘endpoint’’

genes, starting from the earliest ETP cells, identified by Flt3 and

Cd34 enrichment, to committed DN3 cells, marked by high Ptcra,

Cd3e, andCd3g. This initial clusteringwasbroadly consistent with

results from previous bulk RNA analysis. However, it revealed that

progenitor or alternative lineage genes were not all co-expressed,

but instead displayed distinct, although overlapping patterns.

Among the earliest cells, for example, Lmo2 and Flt3were co-ex-

pressed in amore restricteddevelopmental pattern (mainly cluster

2), thanKit andSpi1. Cells inDN3 split into 3 clusters, two ofwhich

represented DN3a stages with high levels of Bcl11b, Ets1, Ptcra,

Cd3g, Cd3e, and Rag1 (clusters 6 & 0, mainly distinguished by

different levels of Tcf7). The third DN3 cluster (cluster 7) could

be identified asDN3b cells that had passed the b-selection check-

point based on T cell receptor expression (see Figure 1A), with

enrichment of Lef1, Id3, Tcf7, and Pgk1 but downregulation of

DN3a genes. Only one small ETP subpopulation, low in Tcf7

expression (Figures 2D and 2E, cluster 8) and highly co-express-

ing Mpo, Spi1, Cebpa, Lmo2, and Irf8 but not other progenitor

genes, appeared to be discontinuous from the others. This out-

group population was seen in every analysis we performed and

is identified below. Note that, in each of the seven clusters span-

ning Flt3+ ETP to DN3a, the expression of key regulatory genes

such as Spi1, Tcf7, and Bcl11b was seen consistently among

the cells; 89%–100%of cells expressed >3 copies per cell in rele-

vant clusters (Figure S2G).

Given the distinctive expression of stem- or progenitor-cell-

associated genes (‘‘stem-progenitor genes’’) amongETPs, a cen-

tral question was whether the cells expressing these genes are

representative of the cells entering the T cell program. We used

seqFISH to assess which legacy stem-progenitor genes are co-

expressed with Gata3 and Tcf7 in individual cells. Gata3 activa-

tion began in ETPs with varying levels of Tcf7 transcripts and

became concordant in DN2-DN3 stages (Figure 2F). As expected

(Kueh et al., 2016), the T lineage commitment gene Bcl11b was
using Seurat 2). (E) Annotated tSNE display generated using PC1–6, colored by

mbers of transcripts for Tcf7 against those of T specification genes Gata3 and

cells are defined as in (B), displayed on sqrt+1 scale.
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Figure 3. Semi-supervised C1 Fluidigm (C1) Analysis of Single Cells in the ETP-DN2a Developmental Continuum Supports Co-expression
Hierarchy of T Lineage and Progenitor-Associated Genes

(A) Principal component (PC) loading of first 2 PCs of the analysis based on genes that are differentially expressed in bulk RNA-seq shown in Table S1.

(B) PC1–2 display of 193 cells measured by C1, colored by stage categorization of Flt3, Il2ra (ETP versus DN2a), and Bcl11b positivity.

(C) tSNE display of C1 data with SLM clusters color projected. Both tSNE and clustering with SLM were performed with PC1–10.

(legend continued on next page)
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activated exclusively in cells that express Tcf7 and almost

completely within the DN2 stage (Figure 2F).

To ask directly how ETPs expressing Notch-inducedGata3 an-

d/or Tcf7 differ from ETPs not expressing these genes, we

compared the transcript counts of all other seqFISH genes be-

tween ETP cells with and without expression of Gata3 (>10 tran-

scripts versus %3 transcripts) and/or Tcf7 (>20 transcripts

versus%5 transcripts) (Table S3). The seqFISH results confirmed

that ETPs activating Gata3 and/or Tcf7 were markedly different

from committed, Bcl11b-expressing DN2s in their expression

levels of >30genes (p values< 10�6, two-tailed t test, unequal var-

iances). However, ETPs expressing Gata3 and/or Tcf7 differed

very little from ETPs lacking expression of both Gata3 and Tcf7.

ETPs with and without Gata3 and/or Tcf7 expression were

statistically indistinguishable in their averageexpressionofNotch1

or of stem-progenitor-associated genesSpi1,Cd34,Mpo,Mef2c,

or Bcl11a, which were expressed by the great majority of both

(Table S3). Only Gfi1b and Runx3 differed with p < 10�6, while

Flt3 and Lmo2were slightly lower in expression, and T-promoting

genes, includingHes1andEts1,wereslightly higher in thecells ex-

pressing Gata3 and/or Tcf7 than in those without Gata3 or Tcf7.

Overall, these seqFISH results show that there is continuity be-

tween the stem-progenitor geneexpressionpatterns in those indi-

vidual ETPs starting T lineage development andmost other ETPs.

Individual ETPs in fact spanned boundaries of the gene-set

co-expression clusters seen in the overall ETP-DN3 population

(cf. Figure 2C). For example, the myeloid-associated gene,

Mpo, encoding myeloperoxidase, was expressed at higher

levels in ETPs than either Gata3 or Bcl11b, but a major fraction

ofMpo-expressing cells also clearly expressed Tcf7 (>20 copies

per cell) (Figure 2F). The growth-promoting gene Pim1, which

marked intermediate clusters (Figure 2D, clusters 3,5), was acti-

vated in both Tcf7-low and Tcf7-high ETPs and then increased in

DN2 cells with varied Tcf7 expression. These results suggest

that although not expressed in mature T cells, Mpo as well as

Pim1 were substantially expressed within cells initiating the

T cell program and were not from contaminants.

Deep Sequencing Confirms Stem-Progenitor and ‘‘Non-
T’’ Associated Regulatory Genes Co-expressed with
Gata3 and Tcf7 in Individual ETPs
To extend this inquiry to a sensitive genome-wide analysis of sin-

gle cells, we carried out whole-transcript Smartseq2 scRNA-seq

analysis (from C1 Fluidigm; ‘‘C1’’) of highly purified ETP-DN2a

cells (n = 193 cells) (Figure 3). Despite the low cell numbers,

semi-supervised clustering of the C1 dataset (based on differen-

tially expressed genes described in Figure 1C; Table S1) yielded

high-quality gene expression patterns that supported and

extended those seen in seqFISH. DN3 endpoint cells could not

be included, but the results again separated ETP-DN2a cells ex-
(D) tSNE display with expression patterns of specific genes as indicated overlaid

(E) Heatmap of expression patterns of selected genes (‘‘non-T’’ genes and ‘‘T-a

order, according to (C) and (D). Also see Table S4 for the list of feature genes th

(F) Bi-plots of expression patterns of two non-T lineage markers Irf8 andMpo, ag

Mpo and both T specification genes. Irf8, on the other hand, overlaps with early T s

stage. The dots are colored by expression of Il2ra (CD25) on a log transformed c

(G) Co-expression patterns of stem and progenitor genes and T specification ge

shown in this figure after filtering for single cells with a minimum of 3,600 genes
pressing combinations of multipotent progenitor-associated

genes from the cellsmore highly expressing T lineage associated

genes (Figures 3A–3E; Table S4, ‘‘C1_supervised_markers’’).

Again, one small outgroup was foundwith a highly divergent pro-

gram (Figure 3A, PC2) lacking T cell gene expression, apparently

among cells with a ‘‘Flt3� ETP’’ phenotype (Figures 3B–3E;

cluster 9). Nevertheless, in the rest of the cells, C1-Smartseq

data confirmed that multipotency-associated genes Spi1, Flt3,

Lmo2, Mef2c, Cd7, and Irf8, were all frequently co-expressed

with Tcf7 and Gata3 in individual ETPs, sometimes continuing

into DN2s. Whereas Spi1 could still be co-expressed with the

late DN2a gene Bcl11b, in contrast, Irf8, Lmo2, and Flt3 expres-

sion was almost dichotomous with Bcl11b (Figures 3F and 3G).

This supports the interpretation that expression of these stem-

progenitor genes selectively characterizes most ETPs as they

enter the T cell developmental program.

10X scRNA-Seq Shows Tightly Connected ETP-DN2 Cell
Populations
The seqFISH andC1 results indicated that the regulatory states of

most ETP cells are within the continuum of the T cell specification

trajectory. We therefore dissected this trajectory in depth by

whole-transcriptome analyses of thousands of enriched ETP-

DN2a cells, again with DN3 cells as an internal reference, using

10X Chromium v2 (10X). Samples of 4,627 (replicate1) and

7,076 (replicate2) ETP-DN2 cells plus 10% DN3 cells yielded

30 end-enriched transcriptome profiles with UMI quantitation.

Upon dimensional reduction (tSNE or UMAP), RNA expression

phenotypes separated the cells into 2–3 distinct clusters. These

corresponded respectively to a large mix of ETP-DN2 cells,

DN3 cells, and a small outgroup (Figures 4A and 4B), judged by

expression patterns of genes characterizing different develop-

mental stages or lineages (e.g., Elane [granulocytes], Mpo [mac-

rophages], Klrd1 [NK cells]) (Figure 4C, highlighted in red). Within

the ETP-DN2 continuum, stage-defining genes such as Kit

(ETP-DN2), Il2ra (DN2-DN3), and Bcl11b (committed DN2-DN3)

were localized to different regions but not well separated. Again,

the small outgroup expressed granulocyte-associated genes,

e.g., Elane (Figure 4C) along with some progenitor-associated

genes (Kit,Spi1, and Lmo2), as in the seqFISH (cluster 8 in Figures

2G and 2H) and C1 analyses (cluster 9, Figures 3B–3E). Highly

concordant results were found in an independent 10X experiment

(Figures S3A–S3D), and the 10X results overall agreed well with

the C1 and seqFISH results after CCA scaling (Figure S3E).

Fine resolution unsupervised clustering by SLM distinguished

14 sub-clusters of cells across the ETP-DN3 range (Figures 4A,

4B, and 4D; Table S4, ‘‘10X unsupervised’’). Bcl11b expression

again marked clusters of recently committed cells (Figure 4D,

clusters 5, 2, 9, and 11). The spiked-in DN3 cells again included

both pre-b-selection DN3a cells (cluster 9: high Ptcra, Cd3g,
in red.

ssociated’’ genes). The clusters are ordered by approximate T developmental

at are enriched in individual clusters.

ainst T specification genes Tcf7 and Bcl11b, showing the pattern of overlap of

pecification gene, Tcf7, but minimally withBcl11b, which is expressed at a later

olor scale.

nes Tcf7, Gata3, and Bcl11b. n = 228 total cells measured, n = 193 cells were

and a mitochondrial gene fraction under 0.11.
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Figure 4. A Dense Developmental Continuum of Gene Expression in Early DN pro-T Cells Based on 10x Chromium scRNA-Seq Analysis
(A and B) UMAP(A) and tSNE(B) displays of 10X Chromium data, colored by sub-clusters. Clustering performed with SLM algorithm using PC1-10.

(C) UMAP display with expression patterns of genes that characterize different developmental stages (Flt3,Kit, Il2ra, Spi1,Bcl11b, andRag1) or different lineages

(Elane [granulocytes, GN], Mpo [macrophages, MP], Klrd1 [NK cells, NK]) overlaid in red.

(D) Heatmap displaying the top 10 enriched genes in each sub-cluster ordered by approximate developmental progression based on gene expression and

connectivity in low-dimensional displays. (Seurat 2 pipeline with minimum fraction of expressing cells R0.2, Wilcoxon rank sum test with threshold of 0.2; see

Table S4) n = 4,627 cells: �90% ETP-DN2 and �10% DN3 cells.
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Figure 5. Stage Ordering by RNA Velocity and Pseudotime Modeling from Supervised Analysis of 10X scRNA-Seq Data: Evidence for Gene

Expression Waves during Early T Cell Differentiation

(A–D) RNA velocity analysis on trimmed data using Velocyto (excluding granulocyte precursor andDN3b clusters). (A) mRNA expression patterns for key genes on

PC1–2: higher expression, darker green. (B) Grid arrows indicating relative transition probabilities based on unspliced over spliced transcript ratio calculations

(imputation with k = 90, displayed on PC1–2) using Velocyto. Also see Figures S7C and S7D) DDRtree display analyzed with Monocle 2 and based on the curated

instructive gene list (Table S2), overlaid with pseudo-time staging (C), and branching state (D). Granulocyte precursor andDN3b clusters excluded, n = 4,438 cells.

(E and F) Gene expression patterns along pseudo-time. (E) Relative expression patterns of representative regulatory genes across pseudo-time, colored by

DDRtree ‘‘state’’ (legend in [D]). Also see Figure S8C. (F) Clustered expression heatmap of 763 genes that are differentially expressed along the pseudo-time

(legend continued on next page)
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Cd3d, and Cd3e, non-proliferative) and DN3b cells that had

begun b-selection (cluster 11: high levels of Lef1 and proliferative

markers). The Elane-expressing outgroup was cluster 13. This

left the clusters of greatest interest, representing earlier, pre-

commitment pro-T cells (clusters 0, 10, 4, 6, 7, 8, 12, and 1), pro-

visionally identified by their expression of progenitor-associated

genes such as Cd34, Lmo2, and Mef2c. However, among these

earlier clusters, the ordering was ambiguous in unsupervised

clustering, and the relationship to cluster 13 was still unclear.

This was partly because transcripts of key T cell genes Notch1,

Gata3, and Tcf7 did not change sharply enough to be identified

as highly enriched in any particular ETP-DN2a cluster(s). Another

source of ordering ambiguity among ETP-DN2a cells was the

prominence of multiple states associated with cell cycle, in

both biological replicates (Figures 4D and S3D). Cells expressing

S- or G2+M related genes (e.g., Birc5 and Mki67) were found in

clusters apparently representing different stages along the early-

to-late developmental continuum.

Distinct T Cell Differentiation Kinetics and Identification
of Committed Granulocyte Precursors among ETPs
To confirmwhich gene expression clusters were associated with

T or non-T lineage potential and to verify which weremore or less

advanced in T-linage progression, we used marker genes that

distinguished some of these clusters to fractionate ETPs by

FACS and then directly compared their developmental kinetics

and fates under T cell and non-T cell developmental conditions

(Figure S4A). We also sought to resolve whether the Elane-pos-

itive cells (Figure 2E, cluster 8; Figure 3, cluster 9; Figure 4D,

cluster 13) were part of the T cell developmental pathway or a

separate lineage. These cells uniquely expressed several granu-

locyte-associated genes, including Elane, Ms4a3, Ly6c2, and

Prtn3 but lacked expression of Notch1 or Notch-induced genes

(Hes and, Dtx1), possibly resembling a bone marrow early pre-

neutrophil precursor (Evrard et al., 2018). Distinctively, these

cells co-expressed surface receptors, CD63 and Ly6c2, detect-

able with antibodies that were used to purify them away from

other ETP subsets for developmental tests.

We first confirmed that Flt3+ ETPswere indeedmore immature

than the Flt3� ETPs. Flt3+ and Flt3� ETPs (excluding CD63+

Ly6c+ cells), and DN2a (CD25+Bcl11b-YFP�) cells were co-

cultured with OP9-DL1 stroma to provide T cell differentiation

conditions (Figure S4B). Their progression was scored by two

T cell milestones: onset of CD25 expression, denoting transition

from ETP to DN2a, and the subsequent expression of Bcl11b-

YFP. Then, to test the developmental potential of the Elane+

cells, CD63+ Ly6c+ cells were sorted and compared with

CD63� Ly6c� ETPs. Unlike other ETPs, CD63+ Ly6c+ cells could

not turn on CD25 or Bcl11b-YFP in T cell culture conditions.

Instead, they turned on the granulocyte marker Gr1 after 4 to

5 days (Figures S4C and S4D). These populations were also

tested for their ability to generate alternative lineages in non-T

conditions, in the absence of Notch signaling and with cytokines
(Monocle 2, with q value < 10�8, in both biological replicates). Red, high expressio

Dashed vertical lines are positioned for descriptive purposes, hierarchical cluste

(G) Summary table of fractions of pseudotime-differentially expressed genes in ea

by key TFs PU.1 and Bcl11b in perturbation assays, and the total number of g

10% (0.1).
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supportingmyeloid differentiation. Under these conditions, while

other subsets of ETPs generated multiple types of non-T cells,

CD63+ Ly6c+ cells exclusively gave rise to Gr1+ granulocytes

(Figure S5). Hence, the CD63+Ly6c+ cluster in the thymic ‘‘ETP

compartment’’ is a committed granulocyte precursor, has no T

potential, and differentiates independently of Notch signaling.

Thus, expression of Elane and Prtn3 in single cell and bulk ETP

RNA-seq is attributable to a distinct non-T lineage population

rather than to expression by uncommitted T cell precursors.

Developmental Progression Shows Stage-Dependent
Relationships to Cell-Cycle States
Wecould now address the gene regulatory states associatedwith

T cell specificationper se, in the 10Xdata. Togainbetter resolution

of possible component processes by topologyonamore complex

developmental manifold, we applied a force-directed layout algo-

rithm using SPRING, visualizing long-distance as well as nearest-

neighbor relationships of cells across three reduced dimensions

(Weinreb et al., 2018) (Figure S6). The SPRING graph revealed an

ordered developmental continuum from ETP (Il2ra negative),

through DN2a (Il2ra positive) and committed DN2 cells (Bcl11b

positive), and into the separated DN3a and DN3b cells (offset

Bcl11b high populations) (Figures S6A and S6B), roughly pro-

gressing from top right to bottom left (arrow in Figure S6B). Within

themain zones, the early ETPmarker Flt3 highlighted the top right

edge, while ETP-DN2 geneSpi1 lit up a distinctly larger area of the

ETP-DN2 cluster, and the T lineage commitment geneBcl11bwas

activatedonlyatanedgeaway fromtheFlt3-enrichedzone,contin-

uing into the offset DN3a and DN3b cells (Figure S6A), consistent

with known developmental relationships. However, the cells also

varied strongly along an axis orthogonal to the developmental

direction (FigureS6). Thissecondaxiswas representedbyprolifer-

ative and cell-cycle-state markers (Figure S6A) and RNA content

(Figure S6B). The resolution of two biologically meaningful but

orthogonal axes of variance suggests that cells transition through

multiple cell cycles as they progress through successive differen-

tiation states, rather than confining cell cycling to a single state.

Notably, expression of many functionally important genes was

not uniform within each band of cells across the ‘‘developmental

axis’’. TheG1-associated ETP-DN2 region (upper left) had a con-

centration of cells expressingGata3 and Tcf7, yet this region was

also most enriched for cells expressing high levels of Spi1, Cd7,

and Tyrobp, genes characteristic of non-T cells. Depending on

the actual trajectory the cells take, this state could represent a

developmental branch point, an alternative entry point for pre-

cursors, or a transiently induced upregulation of non-T genes

even along the T cell pathway.

RNA Velocity Analysis Maps the Developmental Flux
from ETP through DN2 and Commitment
To elucidate the developmental fluxes between populations

in the ETP-DN2 transition, we used RNA velocity analysis (Veloc-

yto) (La Manno et al., 2018) (Figures 5A, 5B, and S7). This
n level; blue, low expression level, on a relative scale normalized to each gene.

ring based on expression using the ‘‘complete’’ method.

ch cluster that overlap with regulatory targets activated (act) or repressed (rep)

enes in each cluster. Also see Table S5. Red font highlights fractions above



algorithm uses the ratio of unspliced, presumably nascent, pre-

mRNAs to mature mRNAs to estimate the rate of RNA produc-

tion change and therefore the direction of regulatory change in

low-dimensional transcriptome space, for cells moving through

development. Enabling this, 17% of reads in the 10X scRNA-

seq data indeed mapped to intronic regions of the genome (Fig-

ures S7A and S7B). Data from the 10X analysis, omitting DN3b

and granulocyte precursors, were plotted on a principal compo-

nent space (PC1 and 2 shown in Figures 5A and 5B), with RNA

velocity-based differentiation vectors superimposed on the

same axes (Figure 5B). As in the SPRING layout, expression of

known genes showed that cells separated orthogonally with

cell-cycle differences most evident along PC1 and develop-

mental stage differences more along PC2 (Figures 5A and 5B).

Notably, despite this cell-cycle correlation, differences in cell-

cycle genes did not drive the velocity vector patterns, for the

velocity vectors were nearly identical even when cell-cycle

genes were excluded from the calculation (Figure S7C).

The velocity vector map indicated complex, PC1-biased differ-

entiation trends within the ETP compartment distinct from those

in DN2 and suggested that transition from ETP to DN2a occurred

from a preferential regulatory state (Figure 5B). While velocity

vectors indicated that DN2 cells in all cell-cycle states were uni-

formly progressing toward DN3 (central band of downward point-

ing arrows), the early ETPs (along the topmost zone, colocalized

with Flt3) had velocity vectors suggesting two different attractors

with distinct cell-cycle states. Velocity vectors for theBirc5+ ETPs

(extreme top right, presumably in G2+M) appeared to be pointing

to the left, toward another ETP state, where a subset of these

Birc5+ ETPs appeared to be developmentally static (dots or

shortest arrows). Of note, thesemore static ETPs, possibly repre-

senting a self-renewing subset, also showed the highest ongoing

transcription ofHoxa9, a homeobox gene associatedwith prethy-

mic progenitor specification and leukemia (Gwin et al., 2013) (Fig-

ure S7D). In contrast, ETPs with differentiation velocity vectors

pointing toward an Il2ra+Bcl11b� early DN2a state (down) were

on the left, among Birc5-nonexpressing ETPs. Here, transitions

from a Cd7-high ETP subset (extreme upper left) were most

prominent. The velocity data suggest that the immediate precur-

sors of DN2a cells were among particularly Spi1-high G1 phase

ETP cells,many also transientlyCd7 high, in the process of down-

regulating Flt3 (Figures 5A and S7E).

Supervised Analysis of 10X Data Reveals a
Developmental Trajectory from ETP through T Lineage
Commitment
The RNA velocity analysis was reinforced by the topology

obtainedwhenwe used the 10X datasets to construct a develop-

mental gene expression trajectory. The curated list of genes

used for seqFISH (Table S2) was now used for supervised anal-

ysis of the whole transcriptome data, with DN3b cells and gran-

ulocyte precursors excluded (Figures S8A and S8B; clusters in

Table S4, ‘‘10X_supervised_markers’’). DDRtree (Qiu et al.,

2017b) was used to obtain a connected developmental trajec-

tory and pseudotime staging of the cells (Figures 5C–5E and

S8). From the independent replicates of the 10X analysis, 763

genes were significantly differentially expressed along the pseu-

dotime axis in both (q value < 10�8), and these genes were clus-

tered according to their expression patterns in a heatmap (Fig-
ure 5F; listed in order in Table S5). Figure 5F also indicates

approximate subdivisions and regulatory landmarks; the pattern

of expression in pseudotime of the curated genes themselves is

shown in Figure S8C. While the pseudotime model clearly sup-

ported the distinction between ETP and DN2a stages (approxi-

mately between subdivisions B & C, Figure 5F), additional sub-

stages were present, in accord with the seqFISH analysis (cf.

Figure S1), and thesewere not based on cell-cycle gene clusters.

Instead of monotonic increases or decreases in gene expression

across the trajectory, another group of progenitor-associated

genes (e.g., Spi1, Cd7, Mpo, and Tyrobp) was predicted to rise

transiently upon downregulation of Flt3 within the ETPs (Il2ra

negative), followed by their own downregulation at a later DN2

stage. This implication also accorded with the unsupervised

RNA velocity analysis. Similarly, in second or third waves during

the ETP-DN2 transition and DN2 stages (subdivisions C & D-E,

Figure 5F), other groups of genes including Pim1 were predicted

to undergo transient expression changes before the final

committed DN3 regulatory state.

These predicted pseudotime trends were generally consistent

with known regulatory relationships between the landmark TFs

Bcl11b and PU.1 (encoded by Spi1) and their individual target

genes, based on perturbation experiments that defined targets

of these factors genome wide (Hosokawa et al., 2018a, 2018b;

Ungerb€ack et al., 2018). These perturbation tests defined

326 PU.1-upregulated genes, 237 PU.1-repressed genes, 394

Bcl11b-dependent genes, and 747 Bcl11b-repressed genes.

Bcl11b and/or PU.1 targets represented 214 of the 763 pseudo-

time-indicator genes (Table S5), so we compared the changes in

these genes in pseudotime with changes in expression of Bcl11b

andSpi1 themselves. Figure 5G shows the fractions of genes in in-

dividual pseudotime expression clusters that were significantly

repressed by or dependent on PU.1 or Bcl11b (pattern details in

Table S5). PU.1 indeed positively regulated genes in several

distinct early clusters, particularly in the early transient wave (Fig-

ure 5G, orange margin), but negatively regulated genes in late

(DN3-associated) clusters. Bcl11b primarily activated genes

upregulated late in pseudotime. Bcl11b repression targets were

concentrated among early and intermediate pseudotime-ex-

pressed genes, especially in the two intermediate expression

waves (Figure 5G, groups with green and orange margins). These

geneshadbeendeduced tobeBcl11b repression targetsbecause

acute deletion ofBcl11b caused their expression to increase even

incommittedpro-T cells that hadalready reachedDN2b.This sup-

ports the interpretation that the genes upregulated in the interme-

diate wave are expressed within the T lineage specification

pathway and that their expression is then truncated by Bcl11b.

In Vitro Culture Supports the Single-Cell Trajectory and
Multilineage Priming Model
These intermediate expression waves were unpredicted (Min-

gueneau et al., 2013; Yui and Rothenberg, 2014) andmight either

reflect a succession of transient regulatory states during T cell

development or be computational artifacts of forcing branched

gene expression changes into a single pathway. Specifically, in

the DDRtreemodel, the end stage ETPs exhibited a small branch

going off the trajectory, associated with upregulation of Spi1,

Hhex, Cd7, and Tyrobp, genes strongly affiliated with myeloid,

NK, or DC alternative fates. In pseudotime, however, these
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Figure 6. In Vitro Test of ETP Developmental Staging Favors a Multilineage Priming Model for Gene Expression Waves

(A) Diagram of two hypotheses to explain the branch or early wave patterns observed in the DDRtree and pseudotime analyses.

(B) Diagram of the in vitro developmental culture assays and ETP subset scRNA-seq setups.

(legend continued on next page)
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genes were modeled as transiently upregulated in ETP. In sup-

port of the pseudotime model, ETPs expressing high levels of

these genes (G1-enriched ETPs) were identified in the velocity

analysis within the region most likely to transition to DN2 (Fig-

ure 5B). In seqFISH and C1 distribution analysis, we had also

confirmed that these genes are expressed by a substantial pop-

ulation of cells (Figures 2 and 3). Thus, two hypotheses can

explain this early wave or branch pattern (Figure 6A): (1) lineage

branching, where levels of these non-T cell associated tran-

scripts are accumulated in a subset of cells that have branched

off toward alternative fates; or (2) multilineage priming, in which

genes associated with alternative lineages are expressed tran-

siently in early stages, reflecting the intrinsic regulatory network

structure and phenotypic plasticity of uncommitted early T cell

stages. If lineage branching were true, then the pseudotime

model expression pattern of transiently upregulated genes in

late ETP would be inaccurate.

To test the two hypotheses functionally, we used the pseudo-

time analysis to identify markers that could distinguish between

ETP subpopulations. We then FACS-purified ETP subsets based

on their expression of thesemarkers, and followed their T lineage

developmental kinetics, as well as their alternative lineage poten-

tials, through in vitro culture (Figure 6B). Whereas Flt3 marks

earlier ETPs (Figures 2 and S4), the cell surface marker HSA

(Cd24a) was predicted in pseudotime to be gradually upregulated

during late ETP stages, followed by Ly6d upregulation (Figure 5F).

Unfortunately, CD7 could not be used for subset enrichment due

to lack of a specific antibody. We therefore sorted ETPs into 6

sub-populations according to Flt3, HSA, and Ly6d expression

(Figure S8D) and tested them in OP9 co-culture systems with

and without Notch ligand to compare their developmental poten-

tials and speeds of T lineage progression, as measured by

upregulation of the Bcl11b-YFP reporter. In this T lineage devel-

opmental assay, after 4 days these 6 populations showed a

clear range of T lineage developmental speeds (Figures 6C and

6D). The most advanced population repeatedly appeared to

be Ly6d+ Flt3� ETPs (pop. 6, approximately late substage B, Fig-

ure 5F), and the least advanced population, the Flt3+ Ly6d�HSA�

cells (pop. 1), in good agreement with the single-cell pseudotime

trajectory model. In tests of non-T lineage potential using co-cul-

ture without Notch ligand, Flt3+ cells (pops. 1–3) differentiated

readily into DCs, macrophages, NKs, and some granulocytes,

as expected for uncommitted precursors. However, despite their

association with higher expression of myeloid-affiliated genes

Spi1, Hhex, Tyrobp, and Mpo, all the Flt3� subpopulations

(pops. 4–6) revealed less potential to give rise to DCs andmacro-

phages than the Flt3+ ones, although similar to Flt3+ ETPs in their
(C–E) ETPs (stages [A] and [B], Figure 6D) were subdivided into 6 populations ac

cursors excluded) and analyzed for their developmental progression after 4–7 da

populations after 4 days of culture on OP9-DL1. (D) Bar graphs showing the fracti

OP9-DL1 culture, ordered according to the pseudo-time pattern (n = 3 independen

(E) Non-T lineage potential of individual sorted populations after 7 days of culture

cytokines. n R 4.

(F) Summary plots of percentage of cells passing T developmental milestones i

[C–E]) cultured 5 days on OP9-DL1. Whiskers represent 5–95 percentiles. n = 55

(G andH) Reconstructed transcriptome single cell pseudotime trajectory with 4 ET

with antibody barcodes. (G) DDRtree with pseudotime coloring and highlighted

subpopulations. Redmarkers representmedians. (AnalyzedwithMonocle 2 and b

cells in ETP pop 1, 3, 4, 6, and control, respectively.
output of NKs (Figure 6E). This agreedwith the different outputs of

Flt3+ and Flt3� ETP subsets when myeloid potential was

promoted with alternative cytokines, omitting Flt3 ligand (Fig-

ure S5B). Thus, potential toward DC and macrophage develop-

ment is reduced, not increased, in ETPs when they turn off Flt3.

Finally, to determine whether the developmental potentials of

individual cells trulymatch the transcriptome features of the pseu-

dotime model, we repeated this experiment at the clonal level.

First, we determined the distribution of developmental states

from Bcl11b� DN2a to Bcl11b+ DN2a to DN2b, within clones

generated by single precursors from sorted ETP subsets 1–6 (de-

noted as ETP pops. 1–6, Figure 6F). The results showed that

nearly all cells in clones from all subsets of input cells had crossed

the ETP-DN2 boundary in 5 days (Figure 6F, top). In accord with

the sorted bulk population results (Figure 6D), clones seeded by

precursors from subsets 1 and 2 were slower than the rest and

those seeded from subsets 5 and 6 were faster than the rest at

turning on Bcl11b-YFP and progressing to DN2b (Figure 6F, mid-

dle, bottom). However, despite these differences, >75% of the in-

dividual subset 3 and 4 precursors generated clones in which at

least 30%–50% of the cells had turned on Bcl11b-YFP by day 5

(Figure 6F), confirming the T lineage potential of the founders.

To determine how homogeneously the transcriptomes of these

sorted subsets were actually distributed in pseudotime, at sin-

gle-cell level, we usedcell hashing for scRNA-seq of 5 populations

simultaneously, combining barcoded antibodieswith 10X analysis

(Stoeckius et al., 2018) (Figure 6B, also see STARMethods). Puri-

fied ETP subsets 1, 3, 4, and 6 and a reference ETP-DN3 popula-

tion were labeled and pooled for 10x single-cell transcriptome

analysis. A new DDRTree and a new ‘‘ETP-enriched’’ pseudotime

analysis were calculated from the results (Figures 6G, 6H, and

S8E), and the distinct subset features were deconvolved from

the data by sample cell hashing barcode. The separation and

spread of the clonal developmental assay and the transcriptomic

pseudotime profiles of precursors from sorted gates were in good

agreement. Cells in the Flt3� subsets 4 and 6 resolved to different

pseudotime positions particularly well, and both subsets were

distinct fromsubsets 1 and 3 (Figures 6Gand 6H). FigureS8E con-

firms that their enhanced T lineage differentiation relative to sub-

sets 1 and 3 was indeed correlated with their higher expression

of ‘‘non-T’’ genesSpi1,Hhex, Cd7,Mpo, andTyrobp, as predicted

by RNA velocity results.

These results thus confirm that ETPs advance toward T line-

age progression as they turn off Flt3, but that strong multipo-

tency regulators and non-T markers are transiently elevated in

these cells relative to earlier T cell precursors. This result favors

the multilineage priming model and indicates that the transient
cording to surface markers Flt3, HSA, and Ly6d (committed granulocyte pre-

ys. (C) Representative flow cytometry plots of the development of sorted ETP

on of committed T cells (measured by Bcl11b-YFP upregulation) after 4 days in

t biological replicates, 3rd replicate (Rep3) an average of 2 technical replicates).

on OP9-Control (no Notch ligand, non-T conditions) with lymphoid supporting

n individual clones from individual FACS-sorted precursors (gates same as in

, 62, 63, 58, 58, and 44 live clones in ETP pop1 through 6, respectively.

P subsets (pops. 1, 3, 4, and 6 from [C–F]) and a ETP-DN3 control group tagged

ETP subsets. (H) Pseudotime distribution of individual cells from the 4 sorted

ased on the curated instructive gene list) n = 1,333, 1,144, 1,044, 823, and 3,172
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Figure 7. Summary of Key Findings in This Study

Data imply sequential substages within the ETP compartment before transition

to DN2a, not only marked by asynchronous downregulation of progenitor

genes but also by transient activation of gene waves as the cells progress

toward commitment. The frequency of T lineage potential is very high in ETPs

overall, and although some transiently activated genes are otherwise associ-

ated with non-T fates (multilineage priming), alternative lineage potential in

pro-T cells decreases monotonically as the cells progress from Flt3+ ETP to

Flt3� ETP to DN2a to commitment.
upregulation of these ‘‘non-T’’ genes is an integral feature of the

early T cell developmental program.

DISCUSSION

The T lineage commitment transition has beenmuch studied, but

the events leading up to commitment have been poorly under-

stood until now. Here, we have dissected the gene regulatory

changes and associated developmental potentials during this

process, encompassing ETP to DN2a stages, at the single-cell

level (Figure S1A), with results summarized in Figure 7. This anal-

ysis has provided evidence for an ordered sequence of at least

three transient regulatory states leading toward T lineage

commitment. Evidence that these transient states are truly within

the T cell developmental progression and not representing cells

of different lineages comes from the high T lineage precursor fre-

quency in the starting ETP population, from the relative differen-

tiation kinetics of the candidate intermediate populations, and

from the robust co-expression of T lineage specification TFs

(Tcf7 and Gata3) together with genes specific for the intermedi-

ate states within individual cells. This study thus provides insight

into gene expression dynamics of the earliest T cell precursors,

essential for more accurate modeling of the underlying T cell

specification gene regulatory network.

The results of this study were greatly strengthened by the

complementary contributions from three single-cell transcrip-

tome analysis approaches. Genome-wide transcriptome profiles

based on 10X Chromium droplet-based sequencing had to be

supplemented with highly sensitive seqFISH measurements to

obtain accurate relationships between regulatory genes ex-
334 Cell Systems 9, 321–337, October 23, 2019
pressed in the same cells, while deep sequencing of a smaller

number of cells with C1-SmartSeq2 provided full-transcript

corroboration. We validated the biological predictions of the

pseudotime trajectory using primary cell culturing assays to

test directly the T and other lineage differentiation potentials

among sub-populations of ETPs. The pseudotime model of

gene expression dynamics in early T cell differentiation was

also consistent with recent empirical knockout studies of known

regulatory factors, PU.1 (Spi1) and Bcl11b (Hosokawa et al.,

2018a, 2018b; Ungerb€ack et al., 2018), which activate and

repress target genes that cluster appropriately relative to

Bcl11b and PU.1 expression changes.

Transcriptome clustering and RNA velocity analyses indicated

that developmental progression could be initially linked with cell-

cycle control in ETPs, later becoming cell-cycle-unrestricted in

DN2s. Through RNA velocity and pseudotime analysis, we identi-

fied the most likely phenotype of the immediate DN2 precursors

within the ETP population. Notably, these cells were particularly

enriched for expression of Spi1 and other genes that are not

specific for the T cell pathway, supporting multilineage priming.

This population was distinct from an outgroup of granulocyte-

committed precursors found in every population of ETPs

analyzed. Finally, primitive populations of ETPs with unusually

highHoxa9 transcriptionweredetectable by cell cycle anddistinc-

tive regulatory gene expression velocity (Figure S7D) and could

represent an ETP subset with augmented self-renewal potential.

Using seqFISH and C1 data, we showed that within the ETP

state, the majority of individual cells co-express legacy progen-

itor genes with the critical Notch-induced T cell regulatory genes,

Gata3 and Tcf7. This demonstrates rigorously that intra-thymic

Notch signaling does not immediately shut down expression of

stem and progenitor genes, even as it turns on T cell genes,

and that the two regulatory networks operate together in the

same cells throughout ETP and even into DN2 stages, implying

timescales of days (Kueh et al., 2016). This also suggests the

possibility of crossover regulatory network connections, which

remain to be determined but may help to explain the observed

transient regulatory states. Previous studies suggested that he-

matopoietic stem cells (HSCs) maintain low-level expression of

lineage-associated genes to stay poised for multilineage blood

production while balancing self-renewal and differentiation, a

state termed ‘‘multilineage priming’’ (Hu et al., 1997; Mercer

et al., 2011; Orkin, 2003; vanGalen et al., 2014). Seemingly-over-

lapping patterns of expression of Spi1,Bcl11a,Cebpa, and T cell

specification genes at the population level have been suggested

to explain the persistence of multilineage differentiation potential

in ETP-DN2a cells under conditions of Notch withdrawal (Del

Real and Rothenberg, 2013; Franco et al., 2006; Kueh et al.,

2016; Laiosa et al., 2006; Wang et al., 2014; Yui et al., 2010),

but this has previously been a hypothesis. The results shown

here are the first to demonstrate this co-expression in individual

ETPs. Furthermore, in ETPs, even some ‘‘effector’’ genes repre-

sentative of non-T cell lineages, such asMpo, were also robustly

co-expressed withGata3 and Tcf7 at the single-cell level in pop-

ulations showing a high T lineage precursor frequency; the

seqFISH data ruled out possible doublets. This pattern of co-

expression strongly supports multilineage priming in many indi-

vidual ETP (and even DN2a) cells rather than contamination with

cells lacking T lineage potential.



In summary, we have established a detailed model of

single-cell transcriptome dynamics during the transition from

multipotentiality to T cell lineage commitment, with single-cell

sequencing tools, bolstered by highly sensitive seqFISH analysis

and supported by in vitro differentiation kinetics and the results

of acute transcription factor perturbation studies. This study pro-

vides new potential regulatory steps to explore and validate. For

the first time, the complexity and regulatory substructure within

the first phase of T cell development can be perceived.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human/mouse CD44 PE eBioscience Cat#12-0441-83

Anti-mouse CD117 (cKit) APC eBioscience Cat#17-1171-82

Anti-mouse CD25 eFluor-450 eBioscience Cat#48-0251-82

Anti-mouse CD25 APCe780 eBioscience Cat#47-0251-82

Anti-mouse CD25-Alexa Fluor 647 Biolegend Cat#102020

Anti-mouse CD45 PECy7 eBioscience Cat#25-0451-82

Anti-mouse CD11b PE eBioscience Cat#12-0112-85

Anti-mouse CD11b AF488 eBioscience Cat#53-0112-82

Anti-mouse CD11b APCe780 eBioscience Cat#47-0118-42

Anti-mouse CD11c e450 eBioscience Cat#48-0114-82

Anti-mouse CD11c APCe780 eBioscience Cat#47-0114-82

Anti-mouse CD63 PE Biolegend Cat#143903

Anti-mouse Ly6c PE Biolegend Cat#128008

Anti-mouse Ly6c Alexa Fluor 647 Biolegend Cat#128010

Anti-mouse CD135 (Flt3) BV421 Biolegend Cat#135313

Anti-mouse CD24(HSA) APC Biolegend Cat#138506

Anti-mouse Ly6d PE Biolegend Cat#138603

Anti-mouse Gr1 APC Biolegend Cat#108412

Anti-mouse NK1.1 PE eBioscience Cat#12-5941-83

Anti-mouse Dx5 PE eBioscience Cat#12-5971-83

Anti-mouse NK1.1 Biotin eBioscience Cat#13-5941-85

Anti-mouse CD19 Biotin eBioscience Cat#13-0193-85

Anti-mouse Ter119 Biotin eBioscience Cat#13-5921-85

Anti-mouse CD11b Biotin eBioscience Cat#13-0112-86

Anti-mouse CD11c Biotin eBioscience Cat#13-0114-85

Anti-mouse CD8a Biotin eBioscience Cat#13-0081-86

Anti-mouse TCRgd Biotin eBioscience Cat#13-5711-85

Anti-mouse TCRb Biotin eBioscience Cat#13-5961-85

Streptavidin PerCP-Cy5.5 eBioscience Cat#45-4317-82

PU.1 (9G7) Rabbit mAb (Alexa Fluor 647 conjugate) Cell Signaling Cat#2240

TCF1/TCF7 (C63D9) Rabbit mAb (Alexa Fluor 647 conjugate) Cell Signaling Cat#6709

Totalseq-A0301 anti-mouse Hashtag1 Biolegend Cat#155801

Totalseq-A0301 anti-mouse Hashtag2 Biolegend Cat#155803

Totalseq-A0301 anti-mouse Hashtag3 Biolegend Cat#155805

Totalseq-A0301 anti-mouse Hashtag4 Biolegend Cat#155807

Totalseq-A0301 anti-mouse Hashtag5 Biolegend Cat#155809

Biological Samples

Primary murine thymocytes This work N/A

Chemicals, Peptides, and Recombinant Proteins

MEM Alpha GIBCO Cat#12561-056

Fetal Bovine Serum SigmaAldrich Cat#F7305

Human IL-7 PeproTech Inc Cat#200-07

Human FLT-3-Ligand PeproTech Inc Cat#300-19

Stem Cell Factor PeproTech Inc Cat#250-03

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Murine M-CSF PeproTech Inc Cat#315-02

Mouse GM-CSF Miltenyi Biotec Cat#130-095-739

Murine IL3 PeproTech Inc Cat#213-13

Murine IL6 PeproTech Inc Cat#216-16

HBSS GIBCO Cat#14175-095

HEPES GIBCO Cat#15630-080

Pen Strep Glutamine GIBCO Cat#10378-016

MACS Streptavidin Microbeads Miltenyi Biotec Cat#130-048-101

37% formaldehyde Thermo Fisher Scientific Cat#28908

7AAD eBioscience Cat#00-6993-50

b-mercaptoethanol SigmaAldrich Cat#M6250

NaBH4 SigmaAldrich Cat#452882

DNaseI recombinant, RNase-free Roche Cat#4716728001

203 SSC Invitrogen Cat#15557-036

Formamide Ambion Cat#AM9344

HCR amplification hairpins Molecular Instruments Custom order

Dextran Sulfate SigmaAldrich Cat#D8906

Trolox Calbiochem Cat#648471

Pyranose oxidase SigmaAldrich Cat#P4234

Catalase SigmaAldrich Cat#C3155

Critical Commercial Assays

Illumina Nextera DNA preparation Kit Illumina Cat#FC-121-1030

Nextera Index Kit (96 indexes, 384 samples) Illumina Cat#FC-121-1012

RNeasy Micro Kit QIAGEN Cat#74004

C1� Single-Cell mRNA Seq IFC, 5–10 mm Fluidigm Cat#100-5759

Chromium i7 Multiplex Kit 10X Genomics Cat#120262

Chromium Single Cell 30 Library & Gel Bead Kit v2 10X Genomics Cat#120267

Chromium Single Cell A Chip Kit 10X Genomics Cat#1000009

High Sensitivity DNA Kit Agilent Technologies Cat#5067- 4626

Qubit dsDNA HS Kit Thermo Fisher Scientific Cat#Q32854

SPRIselect reagent kit Beckman Coulter Cat#B23318

Chromium Single Cell 30 GEM, Library & Gel Bead Kit v3 10X Genomics Cat#1000092

Chromium Chip B Single Cell Kit 10X Genomics Cat#1000074

Deposited Data

Bulk RNA-seq data This work Gene Expression Omnibus GSE130812

Two samples, 10X Chromium RNA-seq This work Gene Expression Omnibus GSE130812

C1 Smartseq2 RNA-seq, 226 cells This work Gene Expression Omnibus GSE130812

10X Chromium RNA-seq cell hashing sample, 5 cell

fractions barcoded

This work Gene Expression Omnibus GSE137165

Experimental Models: Cell Lines

OP9-DL1 Schmitt, and Zúñiga-

Pfl€ucker, 2002

N/A

OP9-DL1 dGFP Olariu et al., 2019 N/A

OP9-control Schmitt, and Zúñiga-

Pfl€ucker, 2002

N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6 Jackson laboratories Stock NO: 664

Mouse: B6.Cg-Tg(BCL2)25 Wehi/J (Bcl2-tg) Jackson laboratories Stock NO: 002320

Mouse: Bcl11b-YFP Kueh et al., 2016 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: Bcl11b-YFP x BCL2 This work N/A

Mouse: B6.ROSA26-mTom;Bcl11b-YFP This work N/A

Oligonucleotides

Listed in Table S6 N/A N/A

Software and Algorithms

Bedtools (v.2.17.0) Quinlan and Hall, 2010 http://bedtools.readthedocs.io/en/latest/

Bioconductor (v3.4) N/A http://bioconductor.org/

DESeq2 (v.1.14.1) Love et al., 2014 https://www.bioconductor.org/packages/

devel/bioc/html/DESeq2.html

EdgeR (v.3.16.5) Robinson et al., 2010 http://bioconductor.org/packages/release/

bioc/html/edgeR.html

FlowJo (v10.0.8) N/A https://www.flowjo.com/

Ggplot2 (v.2.2.1) N/A http://ggplot2.org/

MATLAB (R2016a) N/A https://www.mathworks.com/products/

matlab.html

R (v3.4.2) N/A https://www.r-project.org/

RSEM (v1.2.25) Li and Dewey, 2011 http://deweylab.github.io/RSEM/

Rstudio (v1.1.383) N/A https://www.rstudio.com/

Samtools (v0.1.19-96b5f2294a) Li et al., 2009 http://samtools.sourceforge.net/

STAR (v2.4.0; v2.5.2a) Dobin et al., 2013 https://github.com/alexdobin/STAR/releases

Python(v3.6) N/A https://www.python.org

Custom probe design software Shah et al., 2016b Long Cai lab

Velocyto.py (v0.17.8) La Manno et al., 2018 http://velocyto.org/velocyto.py/

Seurat (v2.3.4; v3.0.1) Butler et al., 2018;

Stuart et al., 2019

https://satijalab.org/seurat/

Spring Weinreb et al., 2018 https://kleintools.hms.harvard.edu/tools/

spring.html

Monocle v2 Qiu et al., 2017a, 2017b http://cole-trapnell-lab.github.io/monocle-

release/

Other

BD FACS Aria II Cell Sorter BD Bioscience N/A

Illumina HiSeq 2500 Illumina N/A

Illumina HiSeq 4000 Illumina N/A

Illumina NovaSeq 6000 Illumina N/A

iCyt Mission Technology Reflection Cell Sorter Sony N/A

BD FACSARIA FUSION Cell Sorter BD Bioscience N/A

Miltenyi Biotech MACSQuant 10 Flow Cytometer Miltenyi Biotec N/A

hyb-cells Grace Bio-Labs RD478685-M

Microscope Leica DMi8

Confocal Scanner Unit Yokogawa CSU-W1

sCMOS camera Andor Zyla 4.2 PLUS

40x Oil Objective Lens NA1.30 Leica N/A

Motorized stage MS2000 ASI N/A

Leica wide-field fluorescence inverted microscope Leica 6000

Black PDMS micromesh inserts Microsurfaces MMA-0250-100-08-01
LEAD CONTACT AND MATERIALS AVAILABILITY

All sequence data generated in this study have been deposited in Gene Expression Omnibus and all genotypes of mice used in this

study were crossed from strains available from Jackson Laboratories, or from strains we reported previously (Kueh et al., 2016),
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which are available upon reasonable request. Further information and requests for resources and reagents should be directed to and

will be fulfilled by the Lead Contact, Ellen V. Rothenberg (evroth@its.caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Mice of a variety of genotypeswere used exclusively as sources of primary cells to be analyzed ex vivo in these studies. B6.Bcl11byfp/yfp

reporter (Kueh et al., 2016) mice were used for bulk RNAseq analysis, in vitro developmental assays and ETP subpopulation Cell

Hashing 10X scRNAseq. This nomenclature is used for animals which have a nondisruptive insertion of IRES-mCitrine into the

30-untranslated region of Bcl11b, so that they have wildtype Bcl11b function despite simultaneously expressing the yellow fluorescent

protein. C57BL/6(B6) mice (stock originally from Jackson Laboratories) were used for seqFISH and all other scRNAseq analysis.

B6.ROSA26-mTom;Bcl11b-YFP mice were used for clonal imaging analysis. They were generated by crossing and backcrossing

B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mice, which express ubiquitous membrane Tomato (Jackson Laboratories),

with the B6.Bcl11byfp/yfp reporter mice until both loci were homozygous. Em-Bcl-2-25(Bcl2-tg) (Strasser et al., 1991) and

B6.Bcl11byfp/yfp;Bcl2-tg mice were used for specific culturing assays as indicated below. B6.Bcl11byfp/yfp;Bcl2 mice were generated

through crossing B6.Bcl11byfp/yfp x Bcl2-tg until the Bcl11b locus was homozygous. All adult animals used were mice between 4 and

8 weeks of age, and all samples within experiments were pools from multiple age and sex-matched animals. Animals used for these

experiments were bred and maintained at the Animal Facilities at California Institute of Technology under conventional Specific

Pathogen-Free conditions, and animal protocols were reviewed and approved by the Institute Animal Care and Use Committee of

California Institute of Technology (Protocol #1445-18G). To maximize both thymus population sizes and fertility of the mice in the

colony, care was taken to protect these animals from stress throughout their lifetimes to the greatest extent possible.

Cell Lines
To provide a microenvironment that supports T-lineage differentiation in vitro, we co-cultivated primary cells with the OP9-DL1

stromal cell line (Schmitt and Zúñiga-Pfl€ucker, 2002), which was obtained from Dr. Zúñiga-Pfl€ucker (Sunnybrook Research Institute,

University of Toronto) and maintained in our laboratory as described in the original reference. Control OP9 cells not expressing the

Notch ligand DL1 were used to establish a microenvironment to support non-T cell developmental pathways of primary cells. The

OP9-control cells were also obtained from Dr. Zúñiga-Pfl€ucker. Both OP9-DL1 and OP9-control cell lines were tested and found

to be negative for mycoplasma contamination. For live imaging experiments, a derivative of the OP9-DL1 cells was used, OP9-

DL1-delGFP1, in which the GFP marker in the cell line had been removed by Cas9-mediated disruption as described elsewhere

(Olariu et al., 2019). Details of the differentiation cultures are given below under Method Details.

METHOD DETAILS

Primary Cell Purification
Early stage thymocytes were purified from thymi removed from 4- to 8-week-old animals prior to flow cytometry analysis or

fluorescence-activated cell sorting (FACS). Harvested thymi were mechanically dissociated to make single cell suspensions

that were re-suspended in Fc blocking solution with 2.4G2 hybridoma supernatant (prepared in the Rothenberg lab), followed

by depletion of mature T and non-T lineage cells using a biotin-streptavidin-magnetic bead removal method. Briefly, thymocyte

suspensions were labeled with biotinylated lineage marker antibodies (CD8a, TCRb, TCRgd, Ter119, CD19, CD11c, CD11b,

NK1.1), incubated with MACS Streptavidin Microbeads (Miltenyi Biotec) in HBH buffer (HBSS (Gibco), 0.5% BSA (FractionV),

10 mM HEPES, (Gibco)), pre-filtered through nylon mesh, and passed through a magnetic column (Miltenyi Biotec) on a cell

separation magnet (BD Biosciences) to obtain enriched DN cells. Then, the DN cells were stained with conjugated fluorescent

cell surface antibodies (See Key Resources Table) to purify the ETP, DN2a, and DN3 populations. ETP: Kithigh CD44high

CD25neg. DN2a: Kithigh CD44high CD25+. DN2b: Kitintermed CD44high/intermed CD25+. DN3: Kitlow CD44low CD25+. Where the

Bcl11b-YFP allele is present, the onset of Bcl11b-YFP expression distinguishes T-lineage committed DN2a cells from earlier,

uncommitted DN2a cells (Kueh et al., 2016).

Flow Cytometry and Cell Sorting
Unless otherwise noted, flow cytometry analysis and FACS of all samples were carried out using the procedures outlined. Briefly,

cultured cells on tissue culture plates and primary cells from thymus were prepared as single cell suspensions, incubated in

2.4G2 Fc blocking solution, stained with respective surface cell markers as indicated (See Key Resources Table), resuspended in

HBH, and filtered through a 40-mm nylon mesh. They were then analyzed using a benchtop MACSQuant flow cytometer (Miltenyi

Biotec) or sorted with a Sony Synergy 3200 cell sorter (Sony Biotechnology, Inc, San Jose, CA) for most of the single-cell transcrip-

tome analyses and seqFISH samples, or with a FACSAria Fusion cell sorter (BD Biosciences) for the culture assays and ETP subpop-

ulation Cell Hashing scRNAseq. All antibodies used in these experiments are standard, commercially available monoclonal reagents

widely established to characterize immune cell populations in the mouse; details are given in Key Resources Table. Acquired flow

cytometry data were all analyzed with FlowJo software (Tree Star).
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Cell Cultures
Subsets of primary DN thymocytes FACS-purified as described above were cultured on an OP9-DL1 or OP9-control stromal

monolayer system (Schmitt and Zúñiga-Pfl€ucker, 2002) at 37�C in 7% CO2 conditions with standard culture medium [80% aMEM

(Gibco), 20% fetal bovine serum (Sigma-Aldrich), Pen-Strep-glutamine (Gibco), 50 mM b-mercaptoethanol (Sigma)] supplemented

with appropriate cytokines (Lymphoid condition: Flt3L (Pepro Tech Inc.) 10 ng/mL, Human IL7 (Pepro Tech Inc.) 5 ng/mL; Myeloid

condition: M-CSF(Pepro Tech Inc.), GM-CSF(Miltenyi Biotec), and IL-6(Pepro Tech Inc.) each at 5 ng/mL, SCF(Pepro Tech Inc.) at

1 ng/mL, and IL-3 (Pepro Tech Inc.) at 0.1 ng/mL).

Bulk RNA-Seq Analysis
Kithi CD44hi cells purified fromB6.Bcl11byfp/yfp animalswere subdivided into Flt3highCD25lowETP, Flt3lowCD25lowETP,Bcl11b-YFPneg

CD25hi DN2a, andBcl11b-YFPposCD25hi DN2a. fractions, followed byRNApurification following the instructions of the RNeasyMicro

Kit (Qiagen 74004). cDNA from each sample was prepared with or without pre-amplification as indicated in Figure 1. Pre-amplified

samples were prepared with SMART-Seq v4 Ultra Low Input RNA Kit (Takara 634888) and Nextera XT library preparation kits

(FC-131-1096) for Illumina sequencing, column 2, 6, 8,11 in Figures 1B and 1C). Samples without pre-amplification were prepared

using NEBNext Ultra RNA Library Prep Kit for Illumina (E7530, NEB). All bulk libraries were sequenced on Illumina HiSeq2500 in single

readmodewith the read lengthof 50nt.BasecallswereperformedwithRTA1.13.48.0 followedbyconversion toFASTQwithbcl2fastq

1.8.4 and produced approximately 30 million reads per sample.

RNA-seq reads were mapped onto the mouse genome build GRCm38/mm10 using STAR (v2.4.0) and were post-processed with

RSEM (v1.2.25; http://deweylab.github.io/RSEM/) according to the settings in the ENCODE long-rna-seq-pipeline (https://github.

com/ENCODE-DCC/long-rna-seq-pipeline/blob/master/DAC/STAR_RSEM.sh), with the minor modifications that the setting

‘-output-genome-bam–sampling-for-bam’ was added to rsem-calculate-expression. STAR and RSEM reference libraries were

created from genome build GRCm38/mm10 together with the Ensembl gene model file Mus_musculus.GRCm38.gtf. The resulting

bam files were used to create Homer tag directories (makeTagDirectory with –keepAll setting). For analysis of statistical significance

among DEGs, the raw gene counts were derived from each tag directory with ‘analyzeRepeats.pl’ with the ‘–noadj -condenseGenes’

options, followed by the ‘getDiffExpression.pl’ command using EdgeR (v3.6.8; http://bioconductor.org/packages/release/bioc/html/

edgeR.html). For data visualization, RPKM normalized reads were derived using the ‘analyzeRepeats.pl’ command with the options

‘-count exons –condenseGenes –rpkm’; genes with an average of RPKMR1 across samples were kept, and their RPKMvalues were

processed by log transformation. The normalized datasets were then hierarchically clustered with R hclust function based on

Euclidean distance and ‘complete’ linkage. The heatmap is visualized with R pheatmap with log2 transformed RPKM data (after add-

ing 0.1 to all values).

Clonal Imaging Assay of Individual ETPs
To follow individual ETP clones bymicroscopic imaging, Kithi CD44hi CD25- ETP cells were purified fromB6.ROSA26-mTom;Bcl11b-

YFP mice (generated as described in the Animal sections above). Sorted ETP cells were plated onto OP9-DL1 stromal cells lacking

GFP (OP9-DL1-delGFP1) in 24-well glass bottom plates with black 8mm circular poly(dimethyl siloxane) PDMS micromeshes with

multiple microwells 250mM wide x 100 mM deep, custom fabricated by Microsurfaces (Australia). Cells were cultured in OP9 culture

medium prepared as previously described except for the omission of the pH indicator, phenol red, from the medium, and with the

addition of 10mM Hepes buffer to stabilize the pH of the wells during imaging, plus 10 ng/ml Flt3L, 5 ng/ml IL-7, and 0.05 mg/ml

CD25-AlexaFluor647 (BioLegend), for detection of CD25 surface expression. Wells were imaged daily for 6 days on a Leica 6000

wide-field fluorescence inverted microscope with MetaMorph software and an incubation chamber preset to 37oC, 7% CO2. Wells

found to have exactly one mTomato positive cell on either day 1 or 2 were followed subsequently and scored for CD25 and Bcl11b-

YFP fluorescence.

SeqFISH
Experimental Design

Using seqFISH, single transcripts can be robustly detected and localized in 3D in light-scattering tissue or in samples of thousands of

cells. The strategy detects each targeted genewith up to 24 probes per gene using Hybridization Chain Reaction (HCR) amplification,

in which all the probes against a given gene share the sameHCR amplification handle and are detected in repeated sequential rounds

of color-coded HCR in which each gene is decoded by a different sequence of colors (Shah et al., 2016a). Signals can be aligned by

keeping the sample immobile under the microscope throughout all rounds of processing. This technique enables detection of

transcripts even < 1 kb in size, with a fidelity comparable to conventional single-molecule FISH (smFISH), and can be sequentially

multiplexed (Shah et al., 2016b, 2016a).

T cells have relatively small cytoplasm compared to many cell lines and other cell types, and it was observed that smFISH analysis

was relatively hard to perform due to the high relative content of cytoplasmic membrane and nuclear membrane sandwiching the

small cytoplasm, yielding relatively dim fluorescent signals. To amplify the signal, therefore, we designed a 5-color-sequential bar-

coding scheme of HCR-seqFISH, using an error correction scheme that tolerates 1 round of signal dropout or inaccuracy as

described before (Shah et al., 2016b). We applied HCR-seqFISH against 54 genes on FACS sorted and immobilized early T cells,

followed by additional targeted HCR smFISH analyses and immunostaining on the same samples. Targeted HCR smFISH analyses,

of only five genes at a time, were used for functionally important genes with particularly short transcripts which required maximal
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sensitivity, or for those particularly abundant transcripts which can obstruct detection of other species in the bar-coding rounds.

Briefly, 14–24 primary probes incorporating designed hairpin initiation sequence handles (hyb1) were hybridized tomRNA transcripts

of genes of interest, followed by HCR signal amplification in 5 colors against the ‘‘handles’’. Targeted mRNAs detected by amplified

signals appear to be individual bright dots in microscope images, and were recorded and registered in space. Without moving the

slide on themicroscope, primary probes and readout hairpinswere then digestedwith DNaseI, leavingmRNAs intact, and the second

hybrization round of primary probes, with attached handles permuted (hyb2), were hybridized again. After HCR amplification, the

second round of amplified signals in 5 colors were collected and registered to the previous hybridization. The steps were repeated

until the completion of the designed sequential rounds of hybridization. The individual mRNA molecules were represented by the

sequence of colors that appeared in the same registered spots. The identities of the mRNAs were encoded in the color sequence

(color barcode details in Table S6).

SeqFISH Probe Design and Synthesis

The curated gene set that we selected as targets for seqFISH analysis consisted of regulatory genes that were judged likely to be

functionally important in early T and lymphomyeloid development, based on previous genetic perturbation evidence, and lineage-

associated genes that would be particularly informative as developmental state indicators (www.immgen.org) (Mingueneau et al.,

2013) (reviewed in [Longabaugh et al., 2017; Rothenberg et al., 2016; Yui and Rothenberg, 2014]), as detailed in Table S2. The final

list included 65 genes.

Gene-specific primary probes (35 nt long) were designed as previously described (Shah et al., 2016b), where 5 pairs of

dye-coupled HCR hairpins (IR800, Alexa 647, Alexa 594, Cy3b, and Alexa 488) were used for signal amplification and readout

from primary probes, and the 405nm channel was used for segmentation. Probes to be used in barcoding seqFISH were first

subjected to stringent screening to avoid cross-reactivity, using the probe design software previously described (Shah et al.,

2016b) with the following settings for this study. First, all candidate probes were Blasted against the mouse transcriptome, and ex-

pected copy numbers of off-target probe hits were calculated using predicted RNA counts in the ENCODE database for murine thy-

mocytes. BLAST hits with a 15-nt match on any sequences other than the target genewere considered off-target hits. For each target

gene, any candidate probe that hit an expected cumulative total off-target copy number exceeding a threshold >0.1% of total was

dropped, and candidate probes were sequentially dropped until no off-target gene was hit by more than 6 individual probes from the

entire pool. At this stage, all of the ‘‘viable’’ probes for each gene had been identified. For the final probe set, the best possible subset

from the viable probes was selected such that the final probes were non-overlapping and at least 2-nt bases apart from each other.

The choice between which of two overlapping candidate probes to keep was based on their respective distances from the target GC

content (55% in this case). As a final step to minimize cross-hybridization between probe sets, a local BLAST database was con-

structed from all the viable probe sequences, and all of the probes (including ‘‘handle’’ sequences) were queried against it. All

matches of 17 nt or longer between probes were removed by dropping the matched probe from the larger probe set. The final probe

set size for barcoding seqFISH was 14–24 probes per gene. For targeted, non-barcoding smHCR, 8–24 probes per gene were used,

and genes were analyzed in groups of 5 per HCR round, with groups based on similar probe numbers per gene.

The template oligos were generated from array-synthesized oligopools from oligoarray or Twist Bioscience, and amplified as

described by (Chen et al., 2015) and (Shah et al., 2016b). To balance the probes’ concentrations, each of the template oligos

were synthesized 3 times in the oligo pool, and probe pools for individual hybridizations were assigned a validated primer and assem-

bled according to the following template (complete list in Table S6):

5’ -[Primer 1] - [KpnI] - [‘‘TAG’’] - [primary probe] - [HCR initiator] - [‘‘GAT’’] - [EcoRI] - [Primer 2] - 3’

List of amplification primers:
Name Primer1 Primer2 Batch of oligo Pools

Barcode hyb 1 AATTGAGCAGCTCGGGCCAC GGCGATGGAAGCCTGCAACT 1

Barcode hyb 2 CCGCACGCCGTCCTTAAATC CTTTCCGTGCTGCCGGATCT 1

Barcode hyb 3 GACGCACATATGCGGGCAAG GGCATCTTCGTGACTGCGGA 1

Barcode hyb 4 ATTGAGGGTCTTCGCGTGCC GTAACCGGCGCTTTGCAACC 1

smHCR hyb 1 TGTGCGCTCCGATTGTCCTC GCAAATGGGGTCTGTTGGCC 1

smHCR hyb 2 TGCAGCTCCGCGAAATGAAG CGCTGCCTGTCTGTGCCATT 1

smHCR hyb 3 TCAGGGCACGAGGACATTCG TCCGGCAAGATTGCTCTCCC 2

smHCR hyb 4 ATGCGCTGCAACTGAGACCG TTGTGCCAGCCTTGGTCGAG 2
SeqFISH Experimental Procedures and Imaging

The DN cells were purified as described in ‘‘Cell Purification’’ above, the ETP-DN2 population was FACS sorted as a continuum as

shown in Figure S1C, and an equal number of DN3 cells was sorted separately, each population into tubes containing HBH buffer.

Next, the isolated DN cell fractions were crosslinked with 4% Formaldehyde (ThermoScientific 28908) in 1X PBS for 10min. Then,

cells were spun onto an amino-silane modified coverslip in hyb-cells (Grace Bio-Labs, RD478685-M). They were then crosslinked

again with 4% Formaldehyde (ThermoScientific 28908) in 13 PBS for 10min, and permeabilized in 70% EtOH overnight at 4oC.
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Samples were imaged first to record the surface antibody signals, followed by briefly bleaching away antibody signals through

incubation in 0.1% NaBH4 (Sigma 452882) in 13 PBS for 10min. Then, the samples were washed with PBS and pretreated with

DNaseI (Roche Cat. #04716728001) at 1 U/ml for 2 hrs at 37�C, and washed 3 times with 50% Hybridization buffer (50% HB:

23 SSC (Invitrogen 15557-036), 50% Formamide (v/v) (Ambion AM9344), 10% Dextran Sulfate (Sigma D8906) in Ultrapure water

(Invitrogen 10977-015)). Following pre-treatment, samples were (1) hybridized overnight at 37�C with primary intron probes at

concentrations of 1 nM each oligo in 50% Hybridization Buffer, then (2) washed in 50% Wash Buffer (23 SSC, 50% Formamide

(v/v), 0.1% Triton-X 100 (Sigma X-100)) for 20 minutes, followed by incubation in 23 SSC for 10 minutes. The samples were then

(3) incubated with HCR hairpins in Amplification Buffer (23 SSC, 10% Dextran Sulfate in Ultrapure water) for 30 minutes followed

by (4) washing in 23 SSC for 5 min, and then in 10% Wash Buffer (23 SSC, 10% Formamide (v/v), 0.1% Triton-X 100 (Sigma

X-100)) for 10 minutes. Before imaging, brief DAPI staining was performed for cell background registration and segmentation

(DAPI 5mg/mL, 1min, Sigma D8417), then (5) imaged as described below. After image acquisition, (6) the samples were incubated

with 1 U/ml DNaseI (Roche) for 3 hours at 37�C, and the remaining enzymes were washed out by 30 min incubation with 50%

wash buffer at 37�C. The procedures (3)-(6) constituted one round and were repeated until the completion of all rounds of barcoding

and non-barcoding HCR seqFISH.

Post RNA profiling, additional immunostaining with antibodies was performed in some experiments to quantitate transcription

factor proteins. Specifically, samples were blocked with 1 3 PBS, 1% BSA for 1 hour at room temperature, followed by incubation

with anti-PU.1 or anti-TCF1, and anti-CD44 (not shown) (See Key Resources Table) at 1:100 for 2 hours at room temperature, then

washed in PBS 3 times, and then imaged. Note that antibodies used for surface staining, e.g. anti-cKit, were imaged before hybrid-

ization as described above.

Samples were imaged in an anti-bleaching buffer (20 mM Tris-HCl, 50 mM NaCl, 0.8% glucose, saturated trolox (Calbiochem

648471), pyranose oxidase (OD405 = 0.05) (Sigma P4234), and catalase at a dilution of 1/1000 (Sigma C3155)). Sample port covers

were closed with a glass coverslip or a transparent polycarbonate sheet to exclude oxygen. The images were acquired with a micro-

scope (Leica, DMi8) equipped with a confocal scanner unit (Yokogawa CSU-W1), sCMOS camera (Andor Zyla 4.2 PLUS), 40x oil

objective lens (Leica NA 1.30), and a motorized stage (ASI MS2000). Lasers from CNI and filter sets from Semrock were used. Snap-

shots were acquired with 0.5 mm z steps for more than 30 positions per sample.

Image Processing and Analysis

The images were first corrected to remove the uneven illumination profiles in each channel, the effects of chromatic aberration, and

registered for shift across all hybridizations as described before (Shah et al., 2016b).

For cell segmentation, the cell background taken in the DAPI channel without staining was first maximum z projected and blurred

using a 2D Gaussian blur with a sigma of 1 pixel. The ImageJ-FIJI built in default dark thresholding algorithm was then used to sepa-

rate out the cell boundary from background. Finally, the thresholded image was run through a watershed algorithm to demarcate

individual cells. The obtained individual cell masks were further filtered by size (number of pixels between 600-3000) and circularity

(between 0.7 to 1). The subsequent segmentation results were manually curated and corrected to obtain a final accurate segmen-

tation of images.

The potential mRNA signals were then found by LOG filtering the registered images and finding points of local maxima above a

specified threshold value. Once all potential points in all channels of all hybridizations were obtained, dots were matched to potential

barcode partners in all other channels of all other hybridizations using a 3-pixel search radius to find symmetric nearest neighbors.

The number of each barcode was then counted in each of the assigned segmented cells. Signals were decoded using the designed

sequences of colors that should uniquely represent each targeted gene (Table S6).

The antibody staining quantification was performed with maximum z-projections for each channel. Average pixel intensities were

quantified within individual cell segmentations, subtracted by average background intensity acquired in dummy segmentations (no

cells) in the same fields of view, and multiplied by area to estimate the total signal. Because the quantification was performed after

subtraction of background intensity, the total signal quantitation is not sensitive to segmentation accuracy or area size.

C1TM-Fluidigm Smartseq2 Single Cell RNA-Seq
ETP-DN2a cells were purified as a continuum as described above (Figure S1C), except that no DN3 cells were pooled in for C1 anal-

ysis. The cells were then washed and resuspended to 250,000-cells/mL concentration in HBH buffer; 12 mL of this suspension was

added to 8 mL of Fluidigm Cell Suspension Reagent for loading on the Fluidigm IFC (5-10 mm size). Cells were visually inventoried for

doublets and empty chambers, and returned to the C1 for lysis, reverse transcription and amplification using the SMART-Seq v4

protocol. All amplified cDNA samples were quantified on Qubit and a subset were selected for BioAnalyzer sizing based on yield

and chamber occupancy. The cDNA libraries were then tagmented using the Nextera XT DNA sample prep kit and Nextera XT

indices. After tagmentation and amplification, libraries were pooled, cleaned up with AMPure XP beads (0.93 volume), quantified

on Qubit and sized on the BioAnalyzer. Following the library preparation, the sequencing was performed with single read sequencing

of 50nt on HiSeq2500 with a sequencing depth of 1.5x106 reads per cell. The reads were mapped onto the GRCm38/mm10 mouse

genome assembly.

10X Chromium V2 Single Cell RNA-Seq
The DN thymocytes were enriched as described above, the ETP-DN2 population was sorted together as a continuum as shown in

Figure S1C, and DN3 cells were sorted separately. A small aliquot of DN3 cells representing �10% of the total ETP-DN2 cells was
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added into the ETP-DN2 sample as a developmental endpoint internal reference. The sample was thenwashed and resuspended to 1

million cells/mL concentration in HBSS supplemented with 10% FBS and 10 mM HEPES, 17,400 cells were loaded into each 10X

Chromium v2 lane, and the subsequent preparation was conducted following the instruction manual of 10X Chromium v2. The

cDNA library and final library after index preparation were checked with bioanalyzer (High Sensitivity DNA reagents, Agilent Technol-

ogy #5067-4626; Agilent 2100 Bioanalyzer) for quality control. Following the library preparation, the sequencing was performed with

paired-end sequencing of 150nt each end on one lane of HiSeq4000 per sample, by Fulgent Genetics, Inc. (Temple City, CA). The

reads were mapped onto the mouse genome Ensembl gene model file Mus_musculus.GRCm38.gtf using a standard CellRanger

pipeline. Cells were sequenced to an average depth of 40,000-50,000 reads per cell (target 4x108 reads per lane).

Cell Hashing with Single Cell RNA-Seq
DN cells were purified as described above, pooling thymus samples from eight female B6.Bcl11byfp/yfp mice, 5.5-weeks old. The 4

subsets of ETP cells (pops 1, 3, 4, 6) were sorted 4-way using the gates described in Figure S8D. The sorted cells (total yield �2000

per gate) were concentrated and each subset was incubated individually with TotalSeq A (BioLegend) anti-Mouse Hashtag 1, 2, 3, or

4 (1:50), respectively. A sorted reference population of ETP-DN2 continuum plus 10%DN3 cells, as in Figure S1C, was tagged in par-

allel with anti-MouseHashtag 5. The sampleswere thenwashed 3 timeswith HBSS supplementedwith 10%FBS and 10mMHEPES,

and pooled to load onto one lane of a 10X Chromium V3 chip. The cDNA preparation was performed following the instruction manual

of 10X Chromium v3, and the hashtag library was prepared following the BioLegend TotalseqA guide. The cDNA, tag library, and final

library after index preparation were checked with bioanalyzer (High Sensitivity DNA reagents, Agilent Technology #5067-4626;

Agilent 2100 Bioanalyzer) for quality control. The cDNA final library was sequenced on NovaSeq 6000, and the tag library was

sequenced on HiSeq4000, by Fulgent Genetics, Inc. Cells were sequenced to an average depth of �50,000 reads per cell for

cDNA and �2,500 reads per cell for hashtags.

Single Cell Expression Profile Data Analysis
Analytical Pipelines

The analysis methods applied and the relationships between different datasets and methods are abbreviated in the schematics in

Figure S1B. Specifically, the software/packages Seurat v2.3.4 and 3.0.1 (Butler et al., 2018; Stuart et al., 2019), Monocle v2(Qiu

et al., 2017a, 2017b), Velocyto v0.17.8 (La Manno et al., 2018), and spring (Weinreb et al., 2018) were used in this study, and 10X

raw reads were mapped and assigned by Cell Ranger. Unsupervised analysis of low dimensional representations (tSNE, UMAP,

spring), RNA velocity, and clustering were performed with gene sets filtered as described below.

Supervised clustering and pseudotime analysis of 10X data were performed based on the curated list of genes in Table S2, using

quality control (QC)-trimmed 10X datasets from which the DN3b and granulocyte precursor clusters were computationally removed.

For trajectory analysis, this improves developmental connectivity and T lineage relevance. For seqFISH analysis, data from the cells

were QC trimmed as described below, and for high-dimensional analysis, the expression was further normalized by RNA content/

size, as described below.

Gene and Cell Filtering: Quality Control

In seqFISH analysis, cells with less than 250 barcoded transcripts detected (total from 54 barcoded genes) were omitted. In PCA and

clustering analysis, similar to scRNAseq, the cells were first size-normalized to estimated RNA content. The RNA content in individual

cells was estimated by total number of mRNA signals detected in one bar-coding hybridization round without decoding. Applying the

Quality Control (QC) filter resulted in 4551 cells from 4-week-old animals, 7150 cells from 5-week-old animals and 2598 cells from

8-week-old animals being presented in this study.

The C1 Fluidigm-Smartseq2 analysis was performed based on data filtered on cells that visually appeared to be single cells

observed under the microscope in the Fluidigm chip, with at least 3600 genes expressed, less than 11% mitochondrial content,

and with detectable expression of genes that are differentially expressed in bulk analysis described in Figure 1D. The filter resulted

in 193 cells presented in this study.

Unless otherwise specified, both supervised and unsupervised analysis of 10XChromiumV2 scRNAseqwas based on data filtered

on cells with at least 1200 genes expressed (transcript count over 1); outliers withmore than 4500 geneswere also removed (potential

doublet), and only genes that were found expressed in at least 3 cells were kept in the analysis. For clustering, the cells were further

cleaned to keep only cells with mitochondrial content of less than 5%, with signals normalized to total number of UMI and mitochon-

drial content as recommended by Seurat2. The QC filter resulted in 4627 cells in replicate 1 and 7076 cells in replicate 2 being pre-

sented in this study. The RNA velocity and pseudo-time analysis with Velocyto and Monocle 2, respectively, were performed on the

cells that passed the filtering steps described above, and also with DN3b cluster and granulocyte precursor cluster removed (cluster

13 in unsupervised analysis, both replicates).

Unsupervised clustering analysis of 10X scRNAseq data was performed after log normalization and scaling, with 4307 variable

genes identified in Seurat2 (average expression between 0.0125 and 3, and minimum dispersion of 0). Note that the dispersion filter

was set low to allow capture of subtle features of the developmental continuum.

Inter-technique Comparison
We calculated the average raw gene expression levels in comparable cell input populations between different techniques in their own

measurement units. The general expression levels were found to agree, allowing that the target genes mainly encode transcription
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factors and are expressed at very low levels. Overall, seqFISH was approximately tenfold more sensitive than 10X Chromium v2, in

terms of estimated transcript counts per gene (Figure S2B) and in a greatly reduced dropout rate, as shown for the functionally

essential developmental regulatory genes in Figure S2D. This finding is consistent with the previously described 10% sampling

rate of 10X Chromium v2, at the sequencing depth being used (Islam et al., 2014; Kolodziejczyk et al., 2015). The discrepancies

between the C1-Smartseq2 and 10X systems (Spearman correlation=0.68, Pearson correlation=0.57) are likely due to the difference

in UMI and non-UMI based measurement unit, as amplification steps in Smartseq2 could result in biased readout of some genes.

Aside from sensitivity differences, the biggest qualitative differences between sequencing based (C1-Smartseq2 and 10X) and

seqFISHmeasurements on the sele cted genes are likely due to the fact that seqFISH by-passes any poly(A)-based reverse transcrip-

tion-amplification step and probes directly at the exon regions of mRNAs. This can lead to the following: a) seqFISH can also probe

the pre-mRNAs of genes of interest that have not been poly-adenylated; b) when the reverse transcription step in scRNAseq is

inefficient that will lead to dropouts, such that sequencing would more robustly detect genes that are expressed at high levels;

and c) miscalling of transcripts in seqFISH can occur due to crowded transcript signals in limited-sized lymphocytes. Indeed, the

expression patterns of genes between seqFISH and 10X showed general agreement but were still only moderately correlated, as

represented by the Spearman correlation of 0.73 and Pearson correlation of 0.45 on these lowly-expressed regulatory gene tran-

scripts (Figure S2B).

PU.1 and Bcl11b Perturbation Data
The pseudotime model is compared with recently determined functional targets of PU.1 and Bcl11b, in Table S4; Figure 5F. Lists of

genes activated or repressed by PU.1 were taken from the overlap of acute perturbation data for PU.1 gain and loss of function in

DN2a-DN2b pro-T cells [Table S6B in (Ungerb€ack et al., 2018)]. Specifically, the 326 PU.1-activated genes showed both enhanced

activation 48h after exogneous PU.1 was introduced into DN2b cells and reduced expression 4d after endogenous Spi1was disrup-

ted fromDN2a cells (p.adj<0.1). The 237 PU.1-repressed genes showed both downregulation in response to the exogenous PU.1 and

upregulation when endogenous Spi1was disrupted (p.adj<0.1). The 747 Bcl11b-repressed genes and 394 Bcl11b-dependent genes

were defined from the intersection of genes responding significantly (p.adj < 0.05, at least twofold change) in the same direction in at

least two different types of loss of function perturbations affecting DN2b-stage cells: in vivo deletion by Vav1-iCre, in vivo deletion by

pLck-Cre, and/or in vitro acute deletion by Cas9 and guide RNA in DN2b cells [Table S3 in (Hosokawa et al., 2018a)].

QUANTIFICATION AND STATISTICAL ANALYSIS

Experiments and techniques were carried out independently at least twice. Three independent seqFISH experiments were carried

out, two independent 10X analyses were carried out on completely separate biological samples, and cell hashing 10X analysis of

ETP subsets was carried out on a third completely independent biological sample. C1 data were pooled from ETP-DN2a cells sorted

onto the chips in three separate experiments. While analyses shown in the paper are primarily from one of the three seqFISH repli-

cates (in most cases the 4 wk old mouse sample) or one of the two 10X replicates (mostly replicate 1, which yielded greater

sequencing depth per cell), the data were highly consistent between independently generated samples using the same technique,

and highly consistent with the C1 analysis, as shown in Figures S2 and S3. Cell culture experiments were carried out three to four

times independently with concordant results as indicated in Figure 6; Figures S4, S5, and S8. Only the single-cell sorted experiments

in Figures 6F–6H, which corroborate other data in Figures 5, 6C–6E, and S8, were not repeated as such. Clonal imaging data in Fig-

ure 1 (>60 clones) and Figure 6F (>300 clones) each came from one experiment.

The statistical tests and specific settings used for each comparison are indicated in the individual figure and table legends.

DATA AND CODE AVAILABILITY

All sequence data generated in this study have been deposited in Gene Expression Omnibus and are available under accession

numbers GSE130812 and GSE137165. Sources for code used in this study are indicated in the Key Resources Table.
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